Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/api_reference/regression.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ Composition
:toctree: auto_generated/
:template: class.rst

JohnsonQPDRegressor
Pipeline
TransformedTargetRegressor

Expand Down
58 changes: 54 additions & 4 deletions skpro/distributions/qpd.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,42 @@ def get_test_params(cls, parameter_set="default"):
}
return [params1, params2, params3, params4]

def sample(self, n_samples=None):
"""Sample from the distribution.

Parameters
----------
n_samples : int, optional (default=None)
number of samples to generate

Returns
-------
samples : pd.DataFrame
samples from the distribution
"""
if n_samples is not None:
return super().sample(n_samples=n_samples)

# handle scalar case
if self.index is None or self.columns is None:
return super().sample(n_samples=n_samples)

# array case: sample via inverse transform
n_rows = len(self.index)
n_cols = len(self.columns)

random_state = getattr(self, "_random_state", None)
if random_state is None:
random_state = np.random.RandomState()

uniform_samples = pd.DataFrame(
random_state.uniform(size=(n_rows, n_cols)),
index=self.index,
columns=self.columns,
)

return self.ppf(uniform_samples)


class QPD_S(BaseDistribution):
"""Johnson Quantile-Parameterized Distributions with semi-bounded mode.
Expand Down Expand Up @@ -776,7 +812,9 @@ def tfun(x):
theta = np.where(LH2B > 0, qll, qhl)
theta = np.where(LH2B == 0, qml, theta)
if mode == "U":
theta = np.where(LH2B > 0, BL / HL, HB / HL)
theta_raw = np.where(LH2B > 0, BL / HL, HB / HL)
theta_raw = np.where(LH2B == 0, 0.25, theta_raw)
theta = np.clip(theta_raw, 1e-6, 0.5 - 1e-6)

if mode in ["B", "S"]:
in_arccosh = HL / (2 * HBL)
Expand All @@ -785,15 +823,27 @@ def tfun(x):
delta_unn = np.sinh(delta_unn)
delta = delta_unn / c
elif mode == "U":
delta = 1.0 / np.arccosh(1 / (2.0 * theta))
delta = np.where(LH2B == 0, 1, delta)
with np.errstate(divide="ignore", invalid="ignore", over="ignore"):
arg = 1.0 / (2.0 * theta)
arg = np.where(np.isfinite(arg), arg, 1e8)
arg = np.maximum(arg, 1.0 + 1e-8)
ac = np.arccosh(arg)

# prevent division by zero
ac = np.where(ac == 0.0, 1e-8, ac)
delta = 1.0 / ac
delta = np.where(LH2B == 0, 1.0, delta)

if mode == "B":
kappa = HL / np.sinh(2 * delta * c)
elif mode == "S":
kappa = HBL / (delta * c)
elif mode == "U":
kappa = HL / np.sinh(2.0 / delta)
# numerically stable kappa for unbounded mode
with np.errstate(divide="ignore", invalid="ignore", over="ignore"):
s = np.sinh(2.0 / delta)
s = np.where(s == 0.0, 1e-8, s)
kappa = HL / s
kappa = np.where(LH2B == 0, HB, kappa)

params = {
Expand Down
2 changes: 2 additions & 0 deletions skpro/regression/compose/__init__.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
"""Composition and pipelines for probabilistic supervised regression."""

from skpro.regression.compose._johnson_quantile import JohnsonQPDRegressor
from skpro.regression.compose._pipeline import Pipeline
from skpro.regression.compose._ttr import TransformedTargetRegressor

__all__ = [
"Pipeline",
"JohnsonQPDRegressor",
"TransformedTargetRegressor",
]
Loading