Skip to content
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions docs/source/api_ref_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -320,16 +320,16 @@ To download the Gemma 7B model:
gemma.gemma_tokenizer


.. clip
.. -----
clip
-----

.. Vision components to support multimodality using `CLIP encoder <https://arxiv.org/abs/2103.00020>`_.
Vision components to support multimodality using `CLIP encoder <https://arxiv.org/abs/2103.00020>`_.

.. .. autosummary::
.. :toctree: generated/
.. :nosignatures:
.. autosummary::
:toctree: generated/
:nosignatures:

.. clip.clip_vision_encoder
.. clip.TokenPositionalEmbedding
.. clip.TiledTokenPositionalEmbedding
.. clip.TilePositionalEmbedding
clip.clip_vision_encoder
clip.TokenPositionalEmbedding
clip.TiledTokenPositionalEmbedding
clip.TilePositionalEmbedding
159 changes: 159 additions & 0 deletions tests/torchtune/models/clip/test_pos_embedding_interpolation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import pytest
import torch

from tests.test_utils import assert_expected

from torchtune.models.clip._position_embeddings import (
TiledTokenPositionalEmbedding,
TilePositionalEmbedding,
)

# generated comparing vs fairinternal/internal-llama-models
tile_pos_emb_test_cases = [
{
"tgt_num_tiles": 1,
# [max_num_tiles, max_num_tiles, -1, embed_dim] -> (2, 2, 2, 3)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry I don't fully follow these comments in each test case

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just trying to help the reader understand the dimensions provided. I can make it better. -1 is because the actual pos embedding has dim=1 there, but when i created the tests, i created with 2.

"input_tensor": torch.tensor(
[
[
[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]],
[[6.0, 7.0, 8.0], [9.0, 10.0, 11.0]],
],
[
[[12.0, 13.0, 14.0], [15.0, 16.0, 17.0]],
[[18.0, 19.0, 20.0], [21.0, 22.0, 23.0]],
],
]
),
"expected_output": torch.tensor([[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]]]),
},
{
"tgt_num_tiles": 3,
# [max_num_tiles, max_num_tiles, -1, embed_dim] -> (2, 2, 1, 2)
"input_tensor": torch.tensor(
[[[[0.0, 1.0]], [[2.0, 3.0]]], [[[4.0, 5.0]], [[6.0, 7.0]]]]
),
"expected_output": torch.tensor(
[
[[[0.0, 1.0]], [[1.0, 2.0]], [[2.0, 3.0]]],
[[[2.0, 3.0]], [[3.0, 4.0]], [[4.0, 5.0]]],
[[[4.0, 5.0]], [[5.0, 6.0]], [[6.0, 7.0]]],
]
),
},
]

local_pos_emb_test_cases = [
{
"target_n_tokens_per_tile": 1,
# [inpt_n_tokens_per_tile, emb_dim] -> (5, 2)
"input_tensor": torch.tensor(
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]
),
"expected_output": torch.tensor([[0.0, 1.0], [2.0, 3.0]]),
},
{
"target_n_tokens_per_tile": 3,
# [inpt_n_tokens_per_tile, emb_dim] -> (5, 11)
"input_tensor": torch.tensor([[0.0], [1.0], [2.0], [3.0], [4.0]]),
"expected_output": torch.tensor(
[
[0.0000],
[1.0000],
[1.5000],
[2.0000],
[2.0000],
[2.5000],
[3.0000],
[3.0000],
[3.5000],
[4.0000],
]
),
},
]

global_pos_emb_test_cases = [
{
"tgt_max_num_tiles": 2,
"tgt_patch_grid_size": 2,
# [max_num_tiles, max_num_tiles, num_tokens_per_tile, embed_dim] -> (3, 3, 2, 1)
"input_tensor": torch.tensor(
[
[[[0.0], [1.0]], [[2.0], [3.0]], [[4.0], [5.0]]],
[[[6.0], [7.0]], [[8.0], [9.0]], [[10.0], [11.0]]],
[[[12.0], [13.0]], [[14.0], [15.0]], [[16.0], [17.0]]],
]
),
"expected_output": torch.tensor(
[
[
[[0.0000], [1.0000], [2.3333], [5.0000], [6.3333]],
[[4.0000], [3.6667], [5.0000], [7.6667], [9.0000]],
],
[
[[12.0000], [9.0000], [10.3333], [13.0000], [14.3333]],
[[16.0000], [11.6667], [13.0000], [15.6667], [17.0000]],
],
]
),
},
{
"tgt_max_num_tiles": 1,
"tgt_patch_grid_size": 1,
# [max_num_tiles, max_num_tiles, num_tokens_per_tile, embed_dim] -> (1, 1, 5, 2)
"input_tensor": torch.tensor(
[[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]]]
),
"expected_output": torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]]),
},
]


class TestPositionalEmbeddingsInterpolation:
@pytest.mark.parametrize("params", tile_pos_emb_test_cases)
def test_dynamic_resize(self, params):
tgt_num_tiles = params["tgt_num_tiles"]
expected_output = params["expected_output"]
embedding = params["input_tensor"]

resized_pos_embed = TilePositionalEmbedding._resize_position_embedding(
embedding, tgt_num_tiles
)

assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4)

@pytest.mark.parametrize("params", local_pos_emb_test_cases)
def test_resize_local_position_embedding(self, params):
input_tensor = params["input_tensor"]
target_n_tokens_per_tile = params["target_n_tokens_per_tile"]
expected_output = params["expected_output"]

resized_pos_embed = (
TiledTokenPositionalEmbedding._resize_local_position_embedding(
input_tensor, target_n_tokens_per_tile
)
)

assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4)

@pytest.mark.parametrize("params", global_pos_emb_test_cases)
def test_resize_global_position_embedding(self, params):
input_tensor = params["input_tensor"]
tgt_max_num_tiles = params["tgt_max_num_tiles"]
tgt_patch_grid_size = params["tgt_patch_grid_size"]
expected_output = params["expected_output"]

resized_pos_embed = (
TiledTokenPositionalEmbedding._resize_global_position_embedding(
input_tensor, tgt_max_num_tiles, tgt_patch_grid_size
)
)

assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4)
Loading