Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions docs/source/api_ref_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -320,16 +320,16 @@ To download the Gemma 7B model:
gemma.gemma_tokenizer


.. clip
.. -----
clip
-----

.. Vision components to support multimodality using `CLIP encoder <https://arxiv.org/abs/2103.00020>`_.
Vision components to support multimodality using `CLIP encoder <https://arxiv.org/abs/2103.00020>`_.

.. .. autosummary::
.. :toctree: generated/
.. :nosignatures:
.. autosummary::
:toctree: generated/
:nosignatures:

.. clip.clip_vision_encoder
.. clip.TokenPositionalEmbedding
.. clip.TiledTokenPositionalEmbedding
.. clip.TilePositionalEmbedding
clip.clip_vision_encoder
clip.TokenPositionalEmbedding
clip.TiledTokenPositionalEmbedding
clip.TilePositionalEmbedding
349 changes: 349 additions & 0 deletions tests/torchtune/models/clip/test_pos_embedding_interpolation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,349 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import math

import pytest
import torch

from tests.test_utils import assert_expected

from torchtune.models.clip._position_embeddings import (
TiledTokenPositionalEmbedding,
TilePositionalEmbedding,
)

# generated comparing vs fairinternal/internal-llama-models
tile_pos_emb_test_cases = [
{
"tgt_max_num_tiles": 1,
"input_tensor": torch.tensor(
[[[[0.0, 1.0]], [[2.0, 3.0]]], [[[4.0, 5.0]], [[6.0, 7.0]]]]
),
"expected_output": torch.tensor([[[[0.0, 1.0]]]]),
},
{
"tgt_max_num_tiles": 3,
"input_tensor": torch.tensor([[[[0.0]]]]),
"expected_output": torch.tensor(
[
[[[0.0]], [[0.0]], [[0.0]]],
[[[0.0]], [[0.0]], [[0.0]]],
[[[0.0]], [[0.0]], [[0.0]]],
]
),
},
{
"tgt_max_num_tiles": 2,
"input_tensor": torch.tensor(
[
[[[0.0, 1.0]], [[2.0, 3.0]], [[4.0, 5.0]]],
[[[6.0, 7.0]], [[8.0, 9.0]], [[10.0, 11.0]]],
[[[12.0, 13.0]], [[14.0, 15.0]], [[16.0, 17.0]]],
]
),
"expected_output": torch.tensor(
[[[[0.0, 1.0]], [[4.0, 5.0]]], [[[12.0, 13.0]], [[16.0, 17.0]]]]
),
},
]

local_pos_emb_test_cases = [
{
"tgt_patch_grid_size": 2,
"expected_shape": torch.Size([5, 2]),
"input_tensor": torch.tensor(
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]
),
"expected_output": torch.tensor(
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]
),
},
{
"tgt_patch_grid_size": 1,
"expected_shape": torch.Size([2, 1]),
"input_tensor": torch.tensor([[0.0], [1.0], [2.0], [3.0], [4.0]]),
"expected_output": torch.tensor([[0.0], [1.0]]),
},
{
"tgt_patch_grid_size": 2,
"expected_shape": torch.Size([5, 2]),
"input_tensor": torch.tensor([[0.0, 1.0], [2.0, 3.0]]),
"expected_output": torch.tensor(
[[0.0, 1.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0]]
),
},
]

global_pos_emb_test_cases = [
{
"tgt_max_num_tiles": 1,
"tgt_patch_grid_size": 2,
"input_tensor": torch.tensor(
[
[
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]],
[
[10.0, 11.0],
[12.0, 13.0],
[14.0, 15.0],
[16.0, 17.0],
[18.0, 19.0],
],
],
[
[
[20.0, 21.0],
[22.0, 23.0],
[24.0, 25.0],
[26.0, 27.0],
[28.0, 29.0],
],
[
[30.0, 31.0],
[32.0, 33.0],
[34.0, 35.0],
[36.0, 37.0],
[38.0, 39.0],
],
],
]
),
"expected_output": torch.tensor(
[[[[0.0, 1.0], [2.0, 3.0], [14.0, 15.0], [26.0, 27.0], [38.0, 39.0]]]]
),
},
{
"tgt_max_num_tiles": 3,
"tgt_patch_grid_size": 1,
"input_tensor": torch.tensor([[[[0.0], [1.0], [2.0], [3.0], [4.0]]]]),
"expected_output": torch.tensor(
[
[[[0.0000], [1.0000]], [[0.0000], [1.5000]], [[0.0000], [2.0000]]],
[[[0.0000], [2.0000]], [[0.0000], [2.5000]], [[0.0000], [3.0000]]],
[[[0.0000], [3.0000]], [[0.0000], [3.5000]], [[0.0000], [4.0000]]],
]
),
},
{
"tgt_max_num_tiles": 2,
"tgt_patch_grid_size": 2,
"input_tensor": torch.tensor(
[
[
[[0.0, 1.0], [2.0, 3.0]],
[[4.0, 5.0], [6.0, 7.0]],
[[8.0, 9.0], [10.0, 11.0]],
],
[
[[12.0, 13.0], [14.0, 15.0]],
[[16.0, 17.0], [18.0, 19.0]],
[[20.0, 21.0], [22.0, 23.0]],
],
[
[[24.0, 25.0], [26.0, 27.0]],
[[28.0, 29.0], [30.0, 31.0]],
[[32.0, 33.0], [34.0, 35.0]],
],
]
),
"expected_output": torch.tensor(
[
[
[
[0.0000, 1.0000],
[2.0000, 3.0000],
[4.6667, 5.6667],
[10.0000, 11.0000],
[12.6667, 13.6667],
],
[
[8.0000, 9.0000],
[7.3333, 8.3333],
[10.0000, 11.0000],
[15.3333, 16.3333],
[18.0000, 19.0000],
],
],
[
[
[24.0000, 25.0000],
[18.0000, 19.0000],
[20.6667, 21.6667],
[26.0000, 27.0000],
[28.6667, 29.6667],
],
[
[32.0000, 33.0000],
[23.3333, 24.3333],
[26.0000, 27.0000],
[31.3333, 32.3333],
[34.0000, 35.0000],
],
],
]
),
},
]


class TestPositionalEmbeddingsInterpolation:
@pytest.mark.parametrize("params", tile_pos_emb_test_cases)
def test_tile_resize_position_embedding(self, params):
tgt_max_num_tiles = params["tgt_max_num_tiles"]
expected_output = params["expected_output"]
embedding = params["input_tensor"]

resized_pos_embed = TilePositionalEmbedding._resize_position_embedding(
embedding, tgt_max_num_tiles
)

assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4)

@pytest.mark.parametrize("params", local_pos_emb_test_cases)
def test_resize_local_position_embedding(self, params):
input_tensor = params["input_tensor"]
tgt_patch_grid_size = params["tgt_patch_grid_size"]
expected_output = params["expected_output"]

resized_pos_embed = (
TiledTokenPositionalEmbedding._resize_local_position_embedding(
input_tensor, tgt_patch_grid_size
)
)

assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4)

@pytest.mark.parametrize("params", global_pos_emb_test_cases)
def test_resize_global_position_embedding(self, params):
input_tensor = params["input_tensor"]
tgt_max_num_tiles = params["tgt_max_num_tiles"]
tgt_patch_grid_size = params["tgt_patch_grid_size"]
expected_output = params["expected_output"]

resized_pos_embed = (
TiledTokenPositionalEmbedding._resize_global_position_embedding(
input_tensor, tgt_max_num_tiles, tgt_patch_grid_size
)
)

assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4)

@pytest.mark.parametrize(
"local_params, global_params",
zip(local_pos_emb_test_cases, global_pos_emb_test_cases),
)
def test_load_state_dict_hook_tiled_token(self, local_params, global_params):
# Corrected parameters for instantiation
global_max_num_tiles = global_params["expected_output"].shape[0]
global_embed_dim = global_params["expected_output"].shape[-1]
n_tokens_per_tile = local_params["expected_output"].shape[
0
] # Assuming first dimension is tokens per tile
patch_grid_size = int(math.sqrt(n_tokens_per_tile - 1))
tile_size = patch_grid_size * 1 # Assuming patch_size is 1 for simplicity
patch_size = 1

# Instantiate the model
model = TiledTokenPositionalEmbedding(
max_num_tiles=global_max_num_tiles,
embed_dim=global_embed_dim,
tile_size=tile_size,
patch_size=patch_size,
)

# Create state_dict mimicking loading scenario
state_dict = {
"model.local_token_positional_embedding": local_params["input_tensor"],
"model.global_token_positional_embedding": global_params["input_tensor"],
}

# Call the hook directly (simulating loading process)
state_dict_copy = state_dict.copy()
model._load_state_dict_hook(state_dict_copy, "model.")

# Assert expected outputs
assert_expected(
state_dict_copy["model.local_token_positional_embedding"],
local_params["expected_output"],
atol=1e-3,
rtol=1e-4,
)
assert_expected(
state_dict_copy["model.global_token_positional_embedding"],
global_params["expected_output"],
atol=1e-3,
rtol=1e-4,
)

# Check for errors with non-square token grid sizes
with pytest.raises(ValueError):
bad_state_dict = state_dict.copy()

# add +1 to num_token dimension to make it non-square
local_pos_emb = bad_state_dict["model.local_token_positional_embedding"]
bad_local_pos_emb = torch.cat(
(local_pos_emb, local_pos_emb[0].unsqueeze(0)), dim=0
)
bad_state_dict["model.local_token_positional_embedding"] = bad_local_pos_emb

# call
model._load_state_dict_hook(bad_state_dict, "model.")

# Check for errors with non-square tile grid sizes
with pytest.raises(ValueError):
bad_state_dict = state_dict.copy()

# add +1 to num_token dimension to make it non-square
global_pos_emb = bad_state_dict["model.global_token_positional_embedding"]
bad_global_pos_emb = torch.cat(
(global_pos_emb, global_pos_emb[:, :, [0]]), dim=2
)
bad_state_dict[
"model.global_token_positional_embedding"
] = bad_global_pos_emb

# call
model._load_state_dict_hook(bad_state_dict, "model.")

@pytest.mark.parametrize("params", tile_pos_emb_test_cases)
def test_load_state_dict_hook_tile(self, params):

# Extract parameters for instantiation
max_num_tiles = params["expected_output"].shape[0]
embed_dim = params["expected_output"].shape[-1]

# Instantiate the model
model = TilePositionalEmbedding(
max_num_tiles=max_num_tiles,
embed_dim=embed_dim,
)
# Create state_dict mimicking loading scenario
state_dict = {
"model.embedding": params["input_tensor"],
}

# Call the hook
state_dict_copy = state_dict.copy()
model._load_state_dict_hook(state_dict_copy, "model.")

# Assert expected outputs
assert_expected(
state_dict_copy["model.embedding"],
params["expected_output"],
atol=1e-3,
rtol=1e-4,
)

# Check for errors with non-square tile grid sizes
with pytest.raises(ValueError):
bad_state_dict = state_dict.copy()
# Manipulate the tensor to have non-equal max_num_tiles_x and max_num_tiles_y
bad_tensor = torch.cat(
(params["input_tensor"], params["input_tensor"][:, [0], :, :]), dim=1
)
bad_state_dict["model.embedding"] = bad_tensor
model._load_state_dict_hook(bad_state_dict, "model.")
Loading