Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions keras_cv/models/segmentation/basnet/basnet_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ class BASNetTest(TestCase):
def test_basnet_construction(self):
backbone = ResNet18Backbone()
model = BASNet(
input_shape=[288, 288, 3], backbone=backbone, num_classes=1
input_shape=[64, 64, 3], backbone=backbone, num_classes=1
)
model.compile(
optimizer="adam",
Expand All @@ -44,17 +44,17 @@ def test_basnet_construction(self):
def test_basnet_call(self):
backbone = ResNet18Backbone()
model = BASNet(
input_shape=[288, 288, 3], backbone=backbone, num_classes=1
input_shape=[64, 64, 3], backbone=backbone, num_classes=1
)
images = np.random.uniform(size=(2, 288, 288, 3))
images = np.random.uniform(size=(2, 64, 64, 3))
_ = model(images)
_ = model.predict(images)

@pytest.mark.large
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_weights_change(self):
input_size = [288, 288, 3]
target_size = [288, 288, 1]
input_size = [64, 64, 3]
target_size = [64, 64, 1]

images = np.ones([1] + input_size)
labels = np.random.uniform(size=[1] + target_size)
Expand All @@ -64,7 +64,7 @@ def test_weights_change(self):

backbone = ResNet18Backbone()
model = BASNet(
input_shape=[288, 288, 3], backbone=backbone, num_classes=1
input_shape=[64, 64, 3], backbone=backbone, num_classes=1
)
model_metrics = ["accuracy"]
if keras_3():
Expand All @@ -77,7 +77,7 @@ def test_weights_change(self):
)

original_weights = model.refinement_head.get_weights()
model.fit(ds, epochs=1)
model.fit(ds, epochs=1, batch_size=1)
updated_weights = model.refinement_head.get_weights()

for w1, w2 in zip(original_weights, updated_weights):
Expand All @@ -98,11 +98,11 @@ def test_with_model_preset_forward_pass(self):

@pytest.mark.large
def test_saved_model(self):
target_size = [288, 288, 3]
target_size = [64, 64, 3]

backbone = ResNet18Backbone()
model = BASNet(
input_shape=[288, 288, 3], backbone=backbone, num_classes=1
input_shape=[64, 64, 3], backbone=backbone, num_classes=1
)

input_batch = np.ones(shape=[2] + target_size)
Expand Down