Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions src/datasets/tasks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,16 +2,19 @@

from ..utils.logging import get_logger
from .base import TaskTemplate
from .question_answering import QuestionAnswering
from .question_answering import QuestionAnsweringExtractive
from .text_classification import TextClassification


__all__ = ["TaskTemplate", "QuestionAnswering", "TextClassification"]
__all__ = ["TaskTemplate", "QuestionAnsweringExtractive", "TextClassification"]

logger = get_logger(__name__)


NAME2TEMPLATE = {QuestionAnswering.task: QuestionAnswering, TextClassification.task: TextClassification}
NAME2TEMPLATE = {
QuestionAnsweringExtractive.task: QuestionAnsweringExtractive,
TextClassification.task: TextClassification,
}


def task_template_from_dict(task_template_dict: dict) -> Optional[TaskTemplate]:
Expand Down
4 changes: 2 additions & 2 deletions src/datasets/tasks/question_answering.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@


@dataclass(frozen=True)
class QuestionAnswering(TaskTemplate):
class QuestionAnsweringExtractive(TaskTemplate):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
task: str = "question-answering"
task: str = "question-answering-extractive"
input_schema: ClassVar[Features] = Features({"question": Value("string"), "context": Value("string")})
label_schema: ClassVar[Features] = Features(
{
Expand Down
16 changes: 10 additions & 6 deletions tests/test_arrow_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
from datasets.info import DatasetInfo
from datasets.splits import NamedSplit
from datasets.table import ConcatenationTable, InMemoryTable, MemoryMappedTable
from datasets.tasks import QuestionAnswering, TextClassification
from datasets.tasks import QuestionAnsweringExtractive, TextClassification
from datasets.utils.logging import WARNING

from .conftest import s3_test_bucket_name
Expand Down Expand Up @@ -739,7 +739,9 @@ def test_concatenate_with_equal_task_templates(self, in_memory):

def test_concatenate_with_mixed_task_templates_in_common(self, in_memory):
tc_template = TextClassification(text_column="text", label_column="labels")
qa_template = QuestionAnswering(question_column="question", context_column="context", answers_column="answers")
qa_template = QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
info1 = DatasetInfo(
task_templates=[qa_template],
features=Features(
Expand Down Expand Up @@ -794,7 +796,9 @@ def test_concatenate_with_mixed_task_templates_in_common(self, in_memory):
def test_concatenate_with_no_mixed_task_templates_in_common(self, in_memory):
tc_template1 = TextClassification(text_column="text", label_column="labels")
tc_template2 = TextClassification(text_column="text", label_column="sentiment")
qa_template = QuestionAnswering(question_column="question", context_column="context", answers_column="answers")
qa_template = QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
info1 = DatasetInfo(
features=Features(
{
Expand Down Expand Up @@ -2107,7 +2111,7 @@ def test_task_question_answering(self, in_memory):
),
}
)
task = QuestionAnswering(
task = QuestionAnsweringExtractive(
context_column="input_context", question_column="input_question", answers_column="input_answers"
)
info = DatasetInfo(features=features_before_cast, task_templates=task)
Expand All @@ -2124,13 +2128,13 @@ def test_task_question_answering(self, in_memory):
set(dset.flatten().column_names),
)
self.assertDictEqual(features_before_cast, dset.features)
with dset.prepare_for_task(task="question-answering") as dset:
with dset.prepare_for_task(task="question-answering-extractive") as dset:
self.assertSetEqual(
set(["context", "question", "answers.text", "answers.answer_start"]),
set(dset.flatten().column_names),
)
self.assertDictEqual(features_after_cast, dset.features)
# Test we can load from QuestionAnswering template
# Test we can load from QuestionAnsweringExtractive template
info.task_templates = None
with tempfile.TemporaryDirectory() as tmp_dir, Dataset.from_dict(data, info=info) as dset:
with dset.prepare_for_task(task=task) as dset:
Expand Down
8 changes: 4 additions & 4 deletions tests/test_tasks.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from unittest.case import TestCase

from datasets.features import ClassLabel, Features, Sequence, Value
from datasets.tasks import QuestionAnswering, TextClassification
from datasets.tasks import QuestionAnsweringExtractive, TextClassification


class TextClassificationTest(TestCase):
Expand All @@ -25,7 +25,7 @@ def test_from_dict(self):

class QuestionAnsweringTest(TestCase):
def test_column_mapping(self):
task = QuestionAnswering(
task = QuestionAnsweringExtractive(
context_column="input_context", question_column="input_question", answers_column="input_answers"
)
self.assertDictEqual(
Expand All @@ -49,7 +49,7 @@ def test_from_dict(self):
"question_column": "input_question",
"answers_column": "input_answers",
}
task = QuestionAnswering.from_dict(template_dict)
self.assertEqual("question-answering", task.task)
task = QuestionAnsweringExtractive.from_dict(template_dict)
self.assertEqual("question-answering-extractive", task.task)
self.assertEqual(input_schema, task.input_schema)
self.assertEqual(label_schema, task.label_schema)