Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions paddle/fluid/pir/dialect/operator/ir/manual_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@ std::vector<pir::Type> AddNOp::InferMeta(
paddle::dialect::IrTensor dense_out;
paddle::dialect::IrMetaTensor meta_out(&dense_out);

phi::AddNInferMeta(meta_x, &meta_out);
phi::AddNInferMeta(meta_x, &meta_out, phi::MetaConfig(false, false));

std::vector<pir::Type> argument_outputs;
pir::Type out_dense_tensor_type = paddle::dialect::DenseTensorType::get(
Expand Down Expand Up @@ -358,7 +358,7 @@ std::vector<pir::Type> AddN_Op::InferMeta(
paddle::dialect::IrTensor dense_out;
paddle::dialect::IrMetaTensor meta_out(&dense_out);

phi::AddNInferMeta(meta_inputs, &meta_out);
phi::AddNInferMeta(meta_inputs, &meta_out, phi::MetaConfig(false, false));

std::vector<pir::Type> argument_outputs;
pir::Type out_dense_tensor_type = paddle::dialect::DenseTensorType::get(
Expand Down Expand Up @@ -548,7 +548,7 @@ std::vector<pir::Type> AddNWithKernelOp::InferMeta(
paddle::dialect::IrTensor dense_out;
paddle::dialect::IrMetaTensor meta_out(&dense_out);

phi::AddNInferMeta(meta_inputs, &meta_out);
phi::AddNInferMeta(meta_inputs, &meta_out, phi::MetaConfig(false, false));

std::vector<pir::Type> argument_outputs;
pir::Type out_dense_tensor_type = paddle::dialect::DenseTensorType::get(
Expand Down
20 changes: 16 additions & 4 deletions python/paddle/autograd/backward_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -419,17 +419,22 @@ def remove_useless_full_like_ops(block, ops, state):
remove ops which are not in use recursively,

'''
remove_ops = []
inverse_ops = inverse_sort_op(list(ops))
# from output to input
for op in inverse_sort_op(list(ops)):
if op.name() == 'pd_op.full_like':
for op in inverse_ops:
if op.name() == "pd_op.full_like":
if op.result(0).use_empty():
full_op = op.operand_source(1).get_defining_op()
remove_op(block, op, state)
remove_op(block, full_op, state)
remove_ops.append(op)
remove_ops.append(full_op)
elif is_control_flow(op):
for sub_block in op.blocks():
remove_useless_full_like_ops(sub_block, sub_block.ops, state)

for op in remove_ops:
remove_op(block, op, state)


def all_stop_gradient_true(block):
for op in block.ops:
Expand Down Expand Up @@ -518,3 +523,10 @@ def get_grad_semantic_info(op):
else:
grad_semantic_info = op.get_input_grad_semantics()
return grad_semantic_info


def get_split_op(value):
for op in value.all_used_ops():
if op.name() == "builtin.split":
return op
return None
44 changes: 25 additions & 19 deletions python/paddle/autograd/ir_backward.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
dynamic_shape_prim_vjp_guard,
get_grad_semantic_info,
get_real_op_inputs,
get_split_op,
inverse_sort_op,
is_control_flow,
is_inplace_net,
Expand Down Expand Up @@ -90,24 +91,30 @@ def append_add_n(
# need add sum op to accumulate gradient
add_n_list = []
for item in state.value_to_valuegrad[value]:
add_n_list.append(
return_map_value(item[0], bwd_value_to_block_argument_map)
)
if item[0] is not None:
add_n_list.append(
return_map_value(item[0], bwd_value_to_block_argument_map)
)

if value.is_dense_tensor_array_type():
add_n_value = paddle._pir_ops.add_n_array(add_n_list)
if len(add_n_list) == 0:
for tmp in state.value_to_valuegrad[value]:
state.value_to_sumvaluegrad[value].append(tmp)
state.value_to_valuegrad[value] = []
else:
add_n_value = paddle.add_n(add_n_list)
if value.is_dense_tensor_array_type():
add_n_value = paddle._pir_ops.add_n_array(add_n_list)
else:
add_n_value = paddle.add_n(add_n_list)

add_n_op = add_n_value.get_defining_op()
combine_op = add_n_op.operand_source(0).get_defining_op()
update_bwdop_structure(
backward_ops, state.op_to_opgrad[op], [combine_op, add_n_op]
)
add_n_op = add_n_value.get_defining_op()
combine_op = add_n_op.operand_source(0).get_defining_op()
update_bwdop_structure(
backward_ops, state.op_to_opgrad[op], [combine_op, add_n_op]
)

for tmp in state.value_to_valuegrad[value]:
state.value_to_sumvaluegrad[value].append(tmp)
state.value_to_valuegrad[value] = [[add_n_value]]
for tmp in state.value_to_valuegrad[value]:
state.value_to_sumvaluegrad[value].append(tmp)
state.value_to_valuegrad[value] = [[add_n_value]]


def update_bwdop_structure(backward_ops, op_to_opgrad_list, grad_op_list):
Expand Down Expand Up @@ -342,18 +349,15 @@ def make_output_with_output_grad(op):
value not in state.value_to_valuegrad
or state.value_to_valuegrad[value] == []
):
if (
not value.use_empty()
and value.first_use().owner().name() == "builtin.split"
):
if not value.use_empty() and get_split_op(value) is not None:
# pattern case:
# this fwd_op's output is vectorType, it will split to
# Type by builtin_split op, so need get from split op's outputs.
(
split_zero_flag,
split_outputs,
split_output_grad,
) = make_output_with_output_grad(value.first_use().owner())
) = make_output_with_output_grad(get_split_op(value))
zero_flag[i] = all(split_zero_flag)
grad_values = [value[0] for value in split_output_grad]
state.value_to_valuegrad[value] = [grad_values]
Expand All @@ -374,6 +378,8 @@ def make_output_with_output_grad(op):

outputs.append(new_value)
grad_value = state.value_to_valuegrad[value][0]
if grad_value[0] is None:
zero_flag[i] = True
output_grads.append(
return_map_value_list(
grad_value, bwd_value_to_block_argument_map
Expand Down