Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 123 additions & 0 deletions paddle/fluid/operators/gumbel_softmax_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/gumbel_softmax_op.h"
#include <string>
#include <unordered_map>
#include "paddle/fluid/operators/common_infer_shape_functions.h"

namespace paddle {
namespace operators {
class GumbelSoftmaxOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
return UnaryOpUnchangedInferShapeCheckAxis(ctx);
}

protected:
framework::OpKernelType GetExpectedKernelType(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

GetExpectedKernelType这里可以不写,只有一个输入X,默认根据X的特征确定Kernel类型

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
};

class GumbelSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor) An N-D Tensor, N >= 1,"
"The first N - 1 dimensions index into a batch of independent "
"distributions "
"and the last dimension represents a vector of probabilities for "
"each class.");
AddOutput("Out", "The sampled tensor with the same shape as X.");
AddAttr<float>("temperature",
"(float, default 1.0) non-negative scalar temperature.")
.SetDefault(1.0);
AddAttr<bool>(
"hard",
"(bool, default false) "
"if True, the returned samples will be discretized as one-hot vectors, "
"but will be differentiated as if it is the soft sample in autograd.")
.SetDefault(false);
AddAttr<int>("axis",
"(int, default -1)"
"The dimension index of Input(x) to perform gumbel_softmax.")
.SetDefault(-1);
AddComment(R"DOC(
GumbelSoftmax Operator.

Samples from the Gumbel-Softmax distribution and optionally discretizes.

)DOC");
}
};

class GumbelSoftmaxGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "gumbel_softmax_grad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "gumbel_softmax_grad");
PADDLE_ENFORCE_EQ(
ctx->GetInputDim("Out"),
ctx->GetInputDim(framework::GradVarName("Out")),
platform::errors::InvalidArgument("Input(Out) and its gradients "
"should have the same shape."));

ctx->SetOutputDim(framework::GradVarName("X"),
ctx->GetInputDim(framework::GradVarName("Out")));
}
};

template <typename T>
class GumbelSoftmaxGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("gumbel_softmax_grad");
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(gumbel_softmax, ops::GumbelSoftmaxOp,
ops::GumbelSoftmaxOpMaker,
ops::GumbelSoftmaxGradOpMaker<paddle::framework::OpDesc>,
ops::GumbelSoftmaxGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(gumbel_softmax_grad, ops::GumbelSoftmaxGradOp);

REGISTER_OP_CPU_KERNEL(
gumbel_softmax,
ops::GumbelSoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
ops::GumbelSoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
gumbel_softmax_grad,
ops::GumbelSoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GumbelSoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);
173 changes: 173 additions & 0 deletions paddle/fluid/operators/gumbel_softmax_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/gumbel_softmax_op.h"

#if defined(__NVCC__) || defined(__HIPCC__)
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/memory/memcpy.h"

namespace paddle {
namespace operators {

template <typename K, typename V>
using KeyValuePair = cub::KeyValuePair<K, V>;

template <typename T>
struct UniformCUDAGenerator {
T min_, max_;
unsigned int seed_;
unsigned int offset_ = 0;
HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed)
: min_(min), max_(max), seed_(seed) {}
HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed,
unsigned int offset)
: min_(min), max_(max), seed_(seed), offset_(offset) {}

HOSTDEVICE T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(min_, max_);
rng.discard(n + offset_);
return dist(rng);
}
};

template <typename T, size_t BlockDim>
__global__ void OneHotCUDAKernel(const int64_t height, const int64_t width,
const int64_t size_out_axis, const T init,
const T* in, T* out) {
typedef cub::BlockReduce<KeyValuePair<int, T>, BlockDim> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;

for (int64_t idx = blockIdx.x; idx < height; idx += gridDim.x) {
KeyValuePair<int, T> kv_pair = {-1, init};
int h = idx / size_out_axis;
int w = idx % size_out_axis;
cub::ArgMax reducer;
for (int k = threadIdx.x; k < width; k += blockDim.x) {
kv_pair = reducer(
{k, in[h * width * size_out_axis + k * size_out_axis + w]}, kv_pair);
}
kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, reducer);
if (threadIdx.x == 0) {
int index = static_cast<int>(kv_pair.key);
out[h * width * size_out_axis + index * size_out_axis + w] = 1;
}
__syncthreads();
}
}

template <typename T>
struct OneHotGenerator<platform::CUDADeviceContext, T> {
static void Transform(const platform::CUDADeviceContext& context,
const Tensor& X, Tensor* Out, int axis) {
const int size_to_axis = SizeToAxis(axis, X.dims());
const int size_from_axis = SizeFromAxis(axis, X.dims());
const int size_out_axis = SizeOutAxis(axis, X.dims());
constexpr int thread_size = 512;
int64_t max_grid_dimx = context.GetCUDAMaxGridDimSize().x;
int64_t height = size_to_axis * size_out_axis;
int block_size = height < max_grid_dimx ? height : max_grid_dimx;

Tensor input_tensor;
input_tensor.mutable_data<T>(Out->dims(), platform::CUDAPlace());
TensorCopy(*Out, context.GetPlace(), &input_tensor);
math::set_constant(context, Out, 0.0);
OneHotCUDAKernel<
T, thread_size><<<block_size, thread_size, 0, context.stream()>>>(
height, size_from_axis / size_out_axis, size_out_axis,
std::numeric_limits<T>::lowest(), input_tensor.data<T>(),
Out->data<T>());
}
};

template <typename T>
__global__ void AddGumbelNoiseCUDAKernel(const T* input_data, T* output_data,
T* noise, const float temperature,
int64_t n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
int step = blockDim.x * gridDim.x;
for (int64_t i = index; i < n; i += step) {
T gumbel_noise = -log(-log(noise[i]));
output_data[i] = (gumbel_noise + input_data[i]) / temperature;
}
}

template <typename T>
struct GumbleNoiseGenerator<platform::CUDADeviceContext, T> {
static void Transform(const platform::CUDADeviceContext& context,
const T* input_data, T* output_data, int size_to_axis,
int size_from_axis, const float temperature) {
Tensor random_tensor;
int64_t size = size_to_axis * size_from_axis;
T* random_data =
random_tensor.mutable_data<T>({size}, platform::CUDAPlace());
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
const unsigned int seed = std::random_device()();

// generate gumbel noise
int device_id =
BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
if (gen_cuda->GetIsInitPy()) {
auto seed_offset = gen_cuda->IncrementOffset(1);
int gen_offset = size * seed_offset.second;
thrust::transform(
index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(random_data),
UniformCUDAGenerator<T>(0.00001, 1, seed_offset.first, gen_offset));
} else {
thrust::transform(index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(random_data),
UniformCUDAGenerator<T>(0.00001, 1, seed));
}

// add gumbel noise to X
const int thread_size = 512;
int64_t block_size = (size + thread_size) / thread_size;
AddGumbelNoiseCUDAKernel<
T><<<block_size, thread_size, 0, context.stream()>>>(
input_data, output_data, random_data, temperature, size);
}
};

#endif
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个endif好像没有配对的ifdef

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

#if defined(__NVCC__) || defined(__HIPCC__)配对

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
gumbel_softmax, ops::GumbelSoftmaxKernel<plat::CUDADeviceContext, float>,
ops::GumbelSoftmaxKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
gumbel_softmax_grad,
ops::GumbelSoftmaxGradKernel<plat::CUDADeviceContext, float>,
ops::GumbelSoftmaxGradKernel<plat::CUDADeviceContext, double>);
Loading