-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add New OP: gumbel_softmax #35506
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
chenwhql
merged 10 commits into
PaddlePaddle:develop
from
YuanRisheng:add_gumbel_softmax_api
Sep 15, 2021
Merged
Add New OP: gumbel_softmax #35506
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
da92e9e
Add New Op: gumbel_softmax
YuanRisheng 0bbcade
Add New Op: gumbel_softmax
YuanRisheng a4325df
Add New Op: gumbel_softmax (amend)
YuanRisheng ee3648c
add __main__ function in unit test
YuanRisheng 6d317f9
fix bugs when test in windows ci
YuanRisheng 04064a5
Merge branch 'PaddlePaddle:develop' into add_gumbel_softmax_api
YuanRisheng fbd5db7
update en docs
YuanRisheng 6779ffd
delete reletive error in unit test
YuanRisheng bedee6e
delete relative error in unit test
YuanRisheng 3fa5180
set hard=True in unit test
YuanRisheng File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,123 @@ | ||
| /* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/fluid/operators/gumbel_softmax_op.h" | ||
| #include <string> | ||
| #include <unordered_map> | ||
| #include "paddle/fluid/operators/common_infer_shape_functions.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
| class GumbelSoftmaxOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| return UnaryOpUnchangedInferShapeCheckAxis(ctx); | ||
| } | ||
|
|
||
| protected: | ||
| framework::OpKernelType GetExpectedKernelType( | ||
| const framework::ExecutionContext& ctx) const override { | ||
| return framework::OpKernelType( | ||
| OperatorWithKernel::IndicateVarDataType(ctx, "X"), | ||
| ctx.device_context()); | ||
| } | ||
| }; | ||
|
|
||
| class GumbelSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { | ||
| public: | ||
| void Make() override { | ||
| AddInput("X", | ||
| "(Tensor) An N-D Tensor, N >= 1," | ||
| "The first N - 1 dimensions index into a batch of independent " | ||
| "distributions " | ||
| "and the last dimension represents a vector of probabilities for " | ||
| "each class."); | ||
| AddOutput("Out", "The sampled tensor with the same shape as X."); | ||
| AddAttr<float>("temperature", | ||
| "(float, default 1.0) non-negative scalar temperature.") | ||
| .SetDefault(1.0); | ||
| AddAttr<bool>( | ||
| "hard", | ||
| "(bool, default false) " | ||
| "if True, the returned samples will be discretized as one-hot vectors, " | ||
| "but will be differentiated as if it is the soft sample in autograd.") | ||
| .SetDefault(false); | ||
| AddAttr<int>("axis", | ||
| "(int, default -1)" | ||
| "The dimension index of Input(x) to perform gumbel_softmax.") | ||
| .SetDefault(-1); | ||
| AddComment(R"DOC( | ||
| GumbelSoftmax Operator. | ||
|
|
||
| Samples from the Gumbel-Softmax distribution and optionally discretizes. | ||
|
|
||
| )DOC"); | ||
| } | ||
| }; | ||
|
|
||
| class GumbelSoftmaxGradOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "gumbel_softmax_grad"); | ||
| OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", | ||
| "Out@GRAD", "gumbel_softmax_grad"); | ||
| PADDLE_ENFORCE_EQ( | ||
| ctx->GetInputDim("Out"), | ||
| ctx->GetInputDim(framework::GradVarName("Out")), | ||
| platform::errors::InvalidArgument("Input(Out) and its gradients " | ||
| "should have the same shape.")); | ||
|
|
||
| ctx->SetOutputDim(framework::GradVarName("X"), | ||
| ctx->GetInputDim(framework::GradVarName("Out"))); | ||
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| class GumbelSoftmaxGradOpMaker : public framework::SingleGradOpMaker<T> { | ||
| public: | ||
| using framework::SingleGradOpMaker<T>::SingleGradOpMaker; | ||
|
|
||
| protected: | ||
| void Apply(GradOpPtr<T> op) const override { | ||
| op->SetType("gumbel_softmax_grad"); | ||
| op->SetInput("Out", this->Output("Out")); | ||
| op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); | ||
| op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); | ||
| op->SetAttrMap(this->Attrs()); | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
|
|
||
| REGISTER_OPERATOR(gumbel_softmax, ops::GumbelSoftmaxOp, | ||
| ops::GumbelSoftmaxOpMaker, | ||
| ops::GumbelSoftmaxGradOpMaker<paddle::framework::OpDesc>, | ||
| ops::GumbelSoftmaxGradOpMaker<paddle::imperative::OpBase>); | ||
| REGISTER_OPERATOR(gumbel_softmax_grad, ops::GumbelSoftmaxGradOp); | ||
|
|
||
| REGISTER_OP_CPU_KERNEL( | ||
| gumbel_softmax, | ||
| ops::GumbelSoftmaxKernel<paddle::platform::CPUDeviceContext, float>, | ||
| ops::GumbelSoftmaxKernel<paddle::platform::CPUDeviceContext, double>); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| gumbel_softmax_grad, | ||
| ops::GumbelSoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>, | ||
| ops::GumbelSoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>); | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,173 @@ | ||
| /* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
| #pragma once | ||
|
|
||
| #include "paddle/fluid/framework/op_registry.h" | ||
| #include "paddle/fluid/framework/operator.h" | ||
| #include "paddle/fluid/operators/gumbel_softmax_op.h" | ||
|
|
||
| #if defined(__NVCC__) || defined(__HIPCC__) | ||
| #ifdef __NVCC__ | ||
| #include "cub/cub.cuh" | ||
| #endif | ||
| #ifdef __HIPCC__ | ||
| #include <hipcub/hipcub.hpp> | ||
| namespace cub = hipcub; | ||
| #endif | ||
|
|
||
| #include <thrust/device_vector.h> | ||
| #include <thrust/host_vector.h> | ||
| #include <thrust/random.h> | ||
| #include <thrust/transform.h> | ||
| #include "paddle/fluid/framework/generator.h" | ||
| #include "paddle/fluid/memory/memcpy.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| template <typename K, typename V> | ||
| using KeyValuePair = cub::KeyValuePair<K, V>; | ||
|
|
||
| template <typename T> | ||
| struct UniformCUDAGenerator { | ||
| T min_, max_; | ||
| unsigned int seed_; | ||
| unsigned int offset_ = 0; | ||
| HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed) | ||
| : min_(min), max_(max), seed_(seed) {} | ||
| HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed, | ||
| unsigned int offset) | ||
| : min_(min), max_(max), seed_(seed), offset_(offset) {} | ||
|
|
||
| HOSTDEVICE T operator()(const unsigned int n) const { | ||
| thrust::minstd_rand rng; | ||
| rng.seed(seed_); | ||
| thrust::uniform_real_distribution<T> dist(min_, max_); | ||
| rng.discard(n + offset_); | ||
| return dist(rng); | ||
| } | ||
| }; | ||
|
|
||
| template <typename T, size_t BlockDim> | ||
| __global__ void OneHotCUDAKernel(const int64_t height, const int64_t width, | ||
| const int64_t size_out_axis, const T init, | ||
| const T* in, T* out) { | ||
| typedef cub::BlockReduce<KeyValuePair<int, T>, BlockDim> BlockReduce; | ||
| __shared__ typename BlockReduce::TempStorage temp_storage; | ||
|
|
||
| for (int64_t idx = blockIdx.x; idx < height; idx += gridDim.x) { | ||
| KeyValuePair<int, T> kv_pair = {-1, init}; | ||
| int h = idx / size_out_axis; | ||
| int w = idx % size_out_axis; | ||
| cub::ArgMax reducer; | ||
| for (int k = threadIdx.x; k < width; k += blockDim.x) { | ||
| kv_pair = reducer( | ||
| {k, in[h * width * size_out_axis + k * size_out_axis + w]}, kv_pair); | ||
| } | ||
| kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, reducer); | ||
| if (threadIdx.x == 0) { | ||
| int index = static_cast<int>(kv_pair.key); | ||
| out[h * width * size_out_axis + index * size_out_axis + w] = 1; | ||
| } | ||
| __syncthreads(); | ||
| } | ||
| } | ||
|
|
||
| template <typename T> | ||
| struct OneHotGenerator<platform::CUDADeviceContext, T> { | ||
| static void Transform(const platform::CUDADeviceContext& context, | ||
| const Tensor& X, Tensor* Out, int axis) { | ||
| const int size_to_axis = SizeToAxis(axis, X.dims()); | ||
| const int size_from_axis = SizeFromAxis(axis, X.dims()); | ||
| const int size_out_axis = SizeOutAxis(axis, X.dims()); | ||
| constexpr int thread_size = 512; | ||
| int64_t max_grid_dimx = context.GetCUDAMaxGridDimSize().x; | ||
| int64_t height = size_to_axis * size_out_axis; | ||
| int block_size = height < max_grid_dimx ? height : max_grid_dimx; | ||
|
|
||
| Tensor input_tensor; | ||
| input_tensor.mutable_data<T>(Out->dims(), platform::CUDAPlace()); | ||
| TensorCopy(*Out, context.GetPlace(), &input_tensor); | ||
| math::set_constant(context, Out, 0.0); | ||
| OneHotCUDAKernel< | ||
| T, thread_size><<<block_size, thread_size, 0, context.stream()>>>( | ||
| height, size_from_axis / size_out_axis, size_out_axis, | ||
| std::numeric_limits<T>::lowest(), input_tensor.data<T>(), | ||
| Out->data<T>()); | ||
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| __global__ void AddGumbelNoiseCUDAKernel(const T* input_data, T* output_data, | ||
| T* noise, const float temperature, | ||
| int64_t n) { | ||
| int index = threadIdx.x + blockIdx.x * blockDim.x; | ||
| int step = blockDim.x * gridDim.x; | ||
| for (int64_t i = index; i < n; i += step) { | ||
| T gumbel_noise = -log(-log(noise[i])); | ||
| output_data[i] = (gumbel_noise + input_data[i]) / temperature; | ||
| } | ||
| } | ||
|
|
||
| template <typename T> | ||
| struct GumbleNoiseGenerator<platform::CUDADeviceContext, T> { | ||
| static void Transform(const platform::CUDADeviceContext& context, | ||
| const T* input_data, T* output_data, int size_to_axis, | ||
| int size_from_axis, const float temperature) { | ||
| Tensor random_tensor; | ||
| int64_t size = size_to_axis * size_from_axis; | ||
| T* random_data = | ||
| random_tensor.mutable_data<T>({size}, platform::CUDAPlace()); | ||
| thrust::counting_iterator<unsigned int> index_sequence_begin(0); | ||
| const unsigned int seed = std::random_device()(); | ||
|
|
||
| // generate gumbel noise | ||
| int device_id = | ||
| BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId(); | ||
| auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id); | ||
| if (gen_cuda->GetIsInitPy()) { | ||
| auto seed_offset = gen_cuda->IncrementOffset(1); | ||
| int gen_offset = size * seed_offset.second; | ||
| thrust::transform( | ||
| index_sequence_begin, index_sequence_begin + size, | ||
| thrust::device_ptr<T>(random_data), | ||
| UniformCUDAGenerator<T>(0.00001, 1, seed_offset.first, gen_offset)); | ||
| } else { | ||
| thrust::transform(index_sequence_begin, index_sequence_begin + size, | ||
| thrust::device_ptr<T>(random_data), | ||
| UniformCUDAGenerator<T>(0.00001, 1, seed)); | ||
| } | ||
|
|
||
| // add gumbel noise to X | ||
| const int thread_size = 512; | ||
| int64_t block_size = (size + thread_size) / thread_size; | ||
| AddGumbelNoiseCUDAKernel< | ||
| T><<<block_size, thread_size, 0, context.stream()>>>( | ||
| input_data, output_data, random_data, temperature, size); | ||
| } | ||
| }; | ||
|
|
||
| #endif | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这个endif好像没有配对的ifdef
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 与 |
||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
| namespace plat = paddle::platform; | ||
| REGISTER_OP_CUDA_KERNEL( | ||
| gumbel_softmax, ops::GumbelSoftmaxKernel<plat::CUDADeviceContext, float>, | ||
| ops::GumbelSoftmaxKernel<plat::CUDADeviceContext, double>); | ||
| REGISTER_OP_CUDA_KERNEL( | ||
| gumbel_softmax_grad, | ||
| ops::GumbelSoftmaxGradKernel<plat::CUDADeviceContext, float>, | ||
| ops::GumbelSoftmaxGradKernel<plat::CUDADeviceContext, double>); | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
GetExpectedKernelType这里可以不写,只有一个输入X,默认根据X的特征确定Kernel类型
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done.