Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
183 changes: 183 additions & 0 deletions paddle/fluid/operators/matmul_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MatMulNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Output<framework::Tensor>("Out");
bool transpose_x = ctx.Attr<bool>("transpose_X");
bool transpose_y = ctx.Attr<bool>("transpose_Y");

if (x->dims().size() == 2) {
out->mutable_data<T>(ctx.GetPlace());

const auto& runner = NpuOpRunner(
"MatMul", {*x, *y}, {*out},
{{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);

} else if (x->dims().size() > 2) {
out->mutable_data<T>(ctx.GetPlace());

const auto& runner =
NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
{{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
}
};

template <typename DeviceContext, typename T>
class MatMulGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
bool transpose_y = ctx.Attr<bool>("transpose_Y");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

if (x->dims().size() == 2) {
if (transpose_y) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", false}});

runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("MatMul", {*dout, *x}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});

runner_dy.Run(stream);
}

} else {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", true}});

runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("MatMul", {*x, *dout}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});

runner_dy.Run(stream);
}
}
} else if (x->dims().size() > 2) {
if (transpose_y) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
{{"adj_x1", false}, {"adj_x2", false}});

runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
{{"adj_x1", true}, {"adj_x2", false}});

runner_dy.Run(stream);
}
} else {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
{{"adj_x1", false}, {"adj_x2", true}});

runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
if ((x->dims().size() == 3) && (dout->dims().size() == 3) &&
(dy->dims().size() == 2)) {
framework::Tensor dout_;
dout_.ShareDataWith(*dout);
std::vector<int> vec_dim = framework::vectorize<int>(dout_.dims());
std::vector<int> vec_dim_v{vec_dim[0] * vec_dim[1], vec_dim[2]};
dout_.Resize(framework::make_ddim(vec_dim_v));

framework::Tensor x_;
x_.ShareDataWith(*x);
std::vector<int> vec_dim_x = framework::vectorize<int>(x_.dims());
std::vector<int> vec_dim_x_v{vec_dim_x[0] * vec_dim_x[1],
vec_dim_x[2]};
x_.Resize(framework::make_ddim(vec_dim_x_v));
const auto& runner_dy =
NpuOpRunner("MatMul", {x_, dout_}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
} else {
const auto& runner_dy =
NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
{{"adj_x1", true}, {"adj_x2", false}});
runner_dy.Run(stream);
}
}
}
}
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
matmul, ops::MatMulNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MatMulNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
matmul_grad,
ops::MatMulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MatMulGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
9 changes: 3 additions & 6 deletions paddle/fluid/operators/memcpy_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,17 +51,14 @@ class MemcpyFunctor {
} else if (dst_place_type_ == 1) {
framework::TensorCopy(lod_tensor, dev_ctx_.GetPlace(), dev_ctx_,
&out_tensor);
}
} else if (dst_place_type_ == 0) {
framework::TensorCopySync(lod_tensor, platform::CPUPlace(), &out_tensor);
#ifdef PADDLE_WITH_ASCEND_CL
else if (dst_place_type_ == 0) { // NOLINT
framework::TensorCopy(lod_tensor, platform::CPUPlace(), dev_ctx_,
&out_tensor);
} else if (dst_place_type_ == 4) {
framework::TensorCopy(lod_tensor, dev_ctx_.GetPlace(), dev_ctx_,
&out_tensor);
}
#endif
else { // NOLINT
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"memcpy dst_place_type: %d is not supported yet.", dst_place_type_));
}
Expand Down
3 changes: 2 additions & 1 deletion paddle/fluid/operators/optimizers/adam_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,8 @@ framework::OpKernelType AdamOp::GetExpectedKernelType(
framework::OpKernelType AdamOp::GetKernelTypeForVar(
const std::string &var_name, const framework::Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const {
if (var_name == "Beta1Pow" || var_name == "Beta2Pow") {
if (var_name == "Beta1Pow" || var_name == "Beta2Pow" ||
var_name == "SkipUpdate") {
return expected_kernel_type;
} else {
return framework::OpKernelType(expected_kernel_type.data_type_,
Expand Down
2 changes: 1 addition & 1 deletion paddle/fluid/operators/optimizers/adam_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@ class AdamNPUKernel : public framework::OpKernel<T> {

if (ctx.HasInput("Beta2Tensor")) {
beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(Beta2Tensor) size must be 1, but get %d",
beta2_tensor->numel()));
Expand Down
4 changes: 4 additions & 0 deletions python/paddle/fluid/contrib/mixed_precision/decorator.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,6 +400,10 @@ def apply_gradients(self, params_grads):
name="update_loss_scaling")
# Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
if isinstance(self._optimizer, paddle.fluid.optimizer.Adam):
# NOTE(zhiqiu): Since found_inf needs to be on cpu in adam op, we
# copy it in advance to avoid multiple time copies.
found_inf = paddle.tensor.creation._memcpy(found_inf,
paddle.CPUPlace())
self._optimizer._set_auxiliary_var('found_inf', found_inf)
optimize_ops = self._optimizer.apply_gradients(params_grads)
return optimize_ops
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import sys
import paddle
sys.path.append("..")
import test_mixed_precision

paddle.enable_static()


class AMPTestNpu(test_mixed_precision.AMPTest):
def setUp(self):
self.place = paddle.NPUPlace(0)


if __name__ == '__main__':
unittest.main()
26 changes: 0 additions & 26 deletions python/paddle/fluid/tests/unittests/test_memcpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,32 +144,6 @@ def test_SELECTED_ROWS(self):
feed={},
fetch_list=[selected_row_var.name, pinned_var.name])

def test_OTHER_PLACE_NotImplementedError(self):
main_program, pinned_var = self.get_prog()
lod_tensor_var = main_program.global_block().create_var( \
name="lod_tensor_0", dtype="float32", persistable=False, stop_gradient=True)
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": lod_tensor_var},
attrs={
"shape": lod_tensor_var.shape,
"dtype": lod_tensor_var.dtype,
"value": 1.0,
"place_type": 0
})
main_program.global_block().append_op(
type='memcpy',
inputs={'X': pinned_var},
outputs={'Out': lod_tensor_var},
attrs={'dst_place_type': 0, })
with self.assertRaises(NotImplementedError):
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
lod_tensor_var_, pinned_ = exe.run(
main_program,
feed={},
fetch_list=[lod_tensor_var.name, pinned_var.name])


class TestMemcpyApi(unittest.TestCase):
def test_api(self):
Expand Down
6 changes: 5 additions & 1 deletion python/paddle/fluid/tests/unittests/test_mixed_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,9 @@ def forward(self, x):


class AMPTest(unittest.TestCase):
def setUp(self):
self.place = paddle.CUDAPlace(0)

def net(self):
input_size = 4096
output_size = 4096
Expand Down Expand Up @@ -82,7 +85,8 @@ def test_skip_update(self):
fetch_list = [
loss, weight, moment1, beta_pow1, 'find_infinite_scale.tmp_0'
]
exe = paddle.static.Executor(paddle.CUDAPlace(0))

exe = paddle.static.Executor(self.place)

train_data = [
np.random.rand(batch_size, input_size).astype(np.float32)
Expand Down