-
Notifications
You must be signed in to change notification settings - Fork 6
Open
Description
您好,我正在尝试复现您的工作,我下载了数据集和预训练模型,但是在第一个ScienceQA任务的训练上,结果就比较低。准确率只有72%左右,和文中的80%有较大的差距。下面是我用的训练代码和测试代码,其他部分没有修改。
训练代码:
################## VICUNA ##################
PROMPT_VERSION=v1
MODEL_VERSION="vicuna-7b-v1.5"
################## VICUNA ##################
################## LLaMA-2 ##################
# PROMPT_VERSION="llava_llama_2"
# MODEL_VERSION="Llama-2-7b-chat-hf"
################## LLaMA-2 ##################
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 29600 ETrain/Train/LLaVA/train_mem.py \
--deepspeed ./scripts/zero3_offload.json \
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
--expert_num 8 \
--model_name_or_path ./checkpoints/LLaVA/Vicuna/vicuna-7b-v1.5 \
--pretrain_mm_mlp_adapter /root/paddlejob/workspace/env_run/zhangshuo/pretrained_model/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5/mm_projector.bin \
--version $PROMPT_VERSION \
--data_path ./playground/Instructions_Original/ScienceQA/train.json \
--image_folder ./cl_dataset \
--vision_tower /root/paddlejob/workspace/env_run/zhangshuo/pretrained_model/clip-vit-large-patch14-336 \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--bf16 True \
--output_dir ./checkpoints/LLaVA/CoIN/ScienceQA_llava_MOE_lora \
--num_train_epochs 1 \
--per_device_train_batch_size 14 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "epoch" \
--learning_rate 2e-4 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to none
测试代码
#!/bin/bash
gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
IFS=',' read -ra GPULIST <<< "$gpu_list"
CHUNKS=${#GPULIST[@]}
if [ ! -n "$1" ] ;then
STAGE='Finetune'
else
STAGE=$1
fi
if [ ! -n "$2" ] ;then
MODELPATH='./checkpoints/Instruction/Only_Pretrain_1.5/ScienceQA/llava-1.5-7b-lora'
else
MODELPATH=$2
fi
RESULT_DIR="./results/CoIN/LLaVA/ScienceQA"
for IDX in $(seq 0 $((CHUNKS-1))); do
CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m ETrain.Eval.LLaVA.CoIN.model_vqa_science \
--model-path $MODELPATH \
--model-base ./checkpoints/LLaVA/Vicuna/vicuna-7b-v1.5 \
--question-file ./playground/Instructions_Original/ScienceQA/test.json \
--image-folder ./cl_dataset \
--answers-file $RESULT_DIR/$STAGE/${CHUNKS}_${IDX}.jsonl \
--num-chunks $CHUNKS \
--chunk-idx $IDX \
--temperature 0 \
--conv-mode vicuna_v1 &
done
wait
output_file=$RESULT_DIR/$STAGE/merge.jsonl
# Clear out the output file if it exists.
> "$output_file"
# Loop through the indices and concatenate each file.
for IDX in $(seq 0 $((CHUNKS-1))); do
cat $RESULT_DIR/$STAGE/${CHUNKS}_${IDX}.jsonl >> "$output_file"
done
python -m ETrain.Eval.LLaVA.CoIN.eval_science_qa \
--base-dir ./cl_dataset/ScienceQA \
--result-file $output_file \
--output-file $RESULT_DIR/$STAGE/output.jsonl \
--output-result $RESULT_DIR/$STAGE/output_result.jsonl \
我使用的预训练模型链接如下:
https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5
https://huggingface.co/lmsys/vicuna-7b-v1.5
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels