Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions recipe/dapo/dapo_ray_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -332,6 +332,11 @@ def fit(self):
actor_output_metrics = reduce_metrics(actor_output.meta_info["metrics"])
metrics.update(actor_output_metrics)

# Log rollout generations if enabled
rollout_data_dir = self.config.trainer.get("rollout_data_dir", None)
if rollout_data_dir:
self._log_rollout_data(batch, reward_extra_infos_dict, timing_raw, rollout_data_dir)

# validate
if (
self.val_reward_fn is not None
Expand Down
17 changes: 1 addition & 16 deletions recipe/one_step_off_policy/ray_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -552,22 +552,7 @@ def fit(self):
# Log rollout generations if enabled
rollout_data_dir = self.config.trainer.get("rollout_data_dir", None)
if rollout_data_dir:
with marked_timer("dump_rollout_generations", timing_raw, color="green"):
inputs = self.tokenizer.batch_decode(batch.batch["prompts"], skip_special_tokens=True)
outputs = self.tokenizer.batch_decode(batch.batch["responses"], skip_special_tokens=True)
scores = batch.batch["token_level_scores"].sum(-1).cpu().tolist()
sample_gts = [
item.non_tensor_batch.get("reward_model", {}).get("ground_truth", None) for item in batch
]

self._dump_generations(
inputs=inputs,
outputs=outputs,
gts=sample_gts,
scores=scores,
reward_extra_infos_dict=reward_extra_infos_dict,
dump_path=rollout_data_dir,
)
self._log_rollout_data(batch, reward_extra_infos_dict, timing_raw, rollout_data_dir)

# validate
if (
Expand Down
17 changes: 1 addition & 16 deletions recipe/sppo/sppo_ray_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,22 +308,7 @@ def fit(self):
# Log rollout generations if enabled
rollout_data_dir = self.config.trainer.get("rollout_data_dir", None)
if rollout_data_dir:
with simple_timer("dump_rollout_generations", timing_raw):
print(batch.batch.keys())
inputs = self.tokenizer.batch_decode(batch.batch["prompts"], skip_special_tokens=True)
outputs = self.tokenizer.batch_decode(batch.batch["responses"], skip_special_tokens=True)
scores = batch.batch["token_level_scores"].sum(-1).cpu().tolist()
sample_gts = [
item.non_tensor_batch.get("reward_model", {}).get("ground_truth", None) for item in batch
]
self._dump_generations(
inputs=inputs,
outputs=outputs,
scores=scores,
reward_extra_infos_dict=reward_extra_infos_dict,
gts=sample_gts,
dump_path=rollout_data_dir,
)
self._log_rollout_data(batch, reward_extra_infos_dict, timing_raw, rollout_data_dir)

# validate
if (
Expand Down
56 changes: 33 additions & 23 deletions verl/trainer/ppo/ray_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -441,6 +441,38 @@ def _dump_generations(self, inputs, outputs, gts, scores, reward_extra_infos_dic

print(f"Dumped generations to {filename}")

def _log_rollout_data(
self, batch: DataProto, reward_extra_infos_dict: dict, timing_raw: dict, rollout_data_dir: str
):
"""Log rollout data to disk.
Args:
batch (DataProto): The batch containing rollout data
reward_extra_infos_dict (dict): Additional reward information to log
timing_raw (dict): Timing information for profiling
rollout_data_dir (str): Directory path to save the rollout data
"""
with marked_timer("dump_rollout_generations", timing_raw, color="green"):
inputs = self.tokenizer.batch_decode(batch.batch["prompts"], skip_special_tokens=True)
outputs = self.tokenizer.batch_decode(batch.batch["responses"], skip_special_tokens=True)
scores = batch.batch["token_level_scores"].sum(-1).cpu().tolist()
sample_gts = [item.non_tensor_batch.get("reward_model", {}).get("ground_truth", None) for item in batch]

reward_extra_infos_to_dump = reward_extra_infos_dict.copy()
if "request_id" in batch.non_tensor_batch:
reward_extra_infos_dict.setdefault(
"request_id",
batch.non_tensor_batch["request_id"].tolist(),
)

self._dump_generations(
inputs=inputs,
outputs=outputs,
gts=sample_gts,
scores=scores,
reward_extra_infos_dict=reward_extra_infos_to_dump,
dump_path=rollout_data_dir,
)

def _maybe_log_val_generations(self, inputs, outputs, scores):
"""Log a table of validation samples to the configured logger (wandb or swanlab)"""

Expand Down Expand Up @@ -1111,29 +1143,7 @@ def fit(self):
# Log rollout generations if enabled
rollout_data_dir = self.config.trainer.get("rollout_data_dir", None)
if rollout_data_dir:
with marked_timer("dump_rollout_generations", timing_raw, color="green"):
inputs = self.tokenizer.batch_decode(batch.batch["prompts"], skip_special_tokens=True)
outputs = self.tokenizer.batch_decode(batch.batch["responses"], skip_special_tokens=True)
scores = batch.batch["token_level_scores"].sum(-1).cpu().tolist()
sample_gts = [
item.non_tensor_batch.get("reward_model", {}).get("ground_truth", None)
for item in batch
]

if "request_id" in batch.non_tensor_batch:
reward_extra_infos_dict.setdefault(
"request_id",
batch.non_tensor_batch["request_id"].tolist(),
)

self._dump_generations(
inputs=inputs,
outputs=outputs,
gts=sample_gts,
scores=scores,
reward_extra_infos_dict=reward_extra_infos_dict,
dump_path=rollout_data_dir,
)
self._log_rollout_data(batch, reward_extra_infos_dict, timing_raw, rollout_data_dir)

# validate
if (
Expand Down
Loading