-
Notifications
You must be signed in to change notification settings - Fork 2.4k
[2/N][rollout] feat: support vllm/sglang DP+EP in server mode #3530
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
vermouth1992
merged 11 commits into
volcengine:main
from
wuxibin89:wuxibin/rollout_dp_ep
Sep 26, 2025
Merged
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
021ec40
[rollout] feat: support vllm/sglang DP+EP in server mode
wuxibin89 5743396
add hybrid rollout test
wuxibin89 0ef3f69
vllm sleep level=1 when EP enabled
wuxibin89 57c0702
add Qwen30B_A3B EP rollout script
wuxibin89 50e3e99
fix sglang dist_init_addr ipv6
wuxibin89 e8cc9cf
bump to sglang==0.5.2
wuxibin89 280f190
fix sglang multi-nodes
wuxibin89 86f1358
fix sglang adpater ipv6 address
wuxibin89 5b899fe
fix vllm config
wuxibin89 14dd442
fix ci
wuxibin89 32a49b8
Drain DP engines for safe sleep
wuxibin89 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,167 @@ | ||
| #!/usr/bin/env bash | ||
| set -xeuo pipefail | ||
|
|
||
| export NCCL_DEBUG=WARN | ||
| # export VERL_LOGGING_LEVEL=DEBUG | ||
|
|
||
| project_name='DAPO' | ||
| exp_name='GSPO-Qwen3-30B-A3B-Base-MATH' | ||
|
|
||
| adv_estimator=grpo | ||
|
|
||
| use_kl_in_reward=False | ||
| kl_coef=0.0 | ||
| use_kl_loss=False | ||
| kl_loss_coef=0.0 | ||
|
|
||
| clip_ratio_low=3e-4 | ||
| clip_ratio_high=4e-4 | ||
|
|
||
| max_prompt_length=$((1024 * 2)) | ||
| max_response_length=$((1024 * 8)) | ||
| enable_overlong_buffer=True | ||
| overlong_buffer_len=$((1024 * 4)) | ||
| overlong_penalty_factor=1.0 | ||
|
|
||
| loss_agg_mode="token-mean" | ||
| loss_mode=gspo | ||
|
|
||
| train_prompt_bsz=256 | ||
| n_resp_per_prompt=16 | ||
| train_prompt_mini_bsz=32 | ||
|
|
||
| # Ray | ||
| # RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"} | ||
| # WORKING_DIR=${WORKING_DIR:-"${PWD}"} | ||
| # RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"} | ||
| NNODES=${NNODES:-2} | ||
| NGPUS_PER_NODE=${NGPUS_PER_NODE:-8} | ||
| # Paths | ||
| # RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"} | ||
| # MODEL_PATH=${MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen3-30B-A3B-Base"} | ||
| # CKPTS_DIR=${CKPTS_DIR:-"${RAY_DATA_HOME}/ckpts/${project_name}/${exp_name}"} | ||
| # TRAIN_FILE=${TRAIN_FILE:-"${RAY_DATA_HOME}/data/dapo-math-17k.parquet"} | ||
| # TEST_FILE=${TEST_FILE:-"${RAY_DATA_HOME}/data/aime-2024.parquet"} | ||
|
|
||
| MODEL_PATH=$HDFS_ROOT/model/Qwen3-30B-A3B-Base | ||
| CKPTS_DIR=$DATA_ROOT/checkpoint/${project_name}/${exp_name} | ||
| TRAIN_FILE=$DATA_ROOT/dataset/BytedTsinghua-SIA/DAPO-Math-17k/data/dapo-math-17k.parquet | ||
| aime24_test_path=$DATA_ROOT/dataset/aime-2024.parquet | ||
|
|
||
| TEST_FILE="['$aime24_test_path']" | ||
|
|
||
| # Algorithm | ||
| temperature=1.0 | ||
| top_p=1.0 | ||
| top_k=-1 # 0 for HF rollout, -1 for vLLM rollout | ||
| val_top_p=0.7 | ||
|
|
||
| # Performance Related Parameter | ||
| use_dynamic_bsz=True | ||
| actor_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 1)) | ||
| infer_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 3)) | ||
| offload=True | ||
|
|
||
| # gen | ||
| rollout_name=vllm # vllm or sglang | ||
| gen_tp=1 | ||
| gen_dp=4 | ||
| gen_ep=4 | ||
|
|
||
| # train | ||
| train_tp=4 | ||
| train_pp=1 | ||
| EP=4 | ||
| ETP=1 | ||
|
|
||
| python3 -m verl.trainer.main_ppo \ | ||
| --config-path=config \ | ||
| --config-name='ppo_megatron_trainer.yaml' \ | ||
| data.train_files="${TRAIN_FILE}" \ | ||
| data.val_files="${TEST_FILE}" \ | ||
| data.prompt_key=prompt \ | ||
| data.return_raw_chat=True \ | ||
| data.truncation='left' \ | ||
| data.max_prompt_length=${max_prompt_length} \ | ||
| data.max_response_length=${max_response_length} \ | ||
| data.train_batch_size=${train_prompt_bsz} \ | ||
| actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ | ||
| actor_rollout_ref.actor.policy_loss.loss_mode=${loss_mode} \ | ||
| algorithm.adv_estimator=${adv_estimator} \ | ||
| algorithm.use_kl_in_reward=${use_kl_in_reward} \ | ||
| algorithm.kl_ctrl.kl_coef=${kl_coef} \ | ||
| actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ | ||
| actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ | ||
| actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ | ||
| actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ | ||
| actor_rollout_ref.actor.clip_ratio_c=10.0 \ | ||
| actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ | ||
| actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ | ||
| actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ | ||
| actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \ | ||
| actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ | ||
| actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ | ||
| actor_rollout_ref.model.path="${MODEL_PATH}" \ | ||
| actor_rollout_ref.actor.optim.lr=1e-6 \ | ||
| actor_rollout_ref.actor.optim.lr_warmup_steps=10 \ | ||
| actor_rollout_ref.actor.optim.weight_decay=0.1 \ | ||
| actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ | ||
| actor_rollout_ref.actor.entropy_coeff=0 \ | ||
| actor_rollout_ref.actor.optim.clip_grad=1.0 \ | ||
| actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ | ||
| actor_rollout_ref.actor.megatron.param_offload=${offload} \ | ||
| actor_rollout_ref.actor.megatron.optimizer_offload=${offload} \ | ||
| actor_rollout_ref.actor.megatron.grad_offload=${offload} \ | ||
| actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=${train_pp} \ | ||
| actor_rollout_ref.actor.megatron.tensor_model_parallel_size=${train_tp} \ | ||
| actor_rollout_ref.actor.megatron.expert_model_parallel_size=$EP \ | ||
| actor_rollout_ref.actor.megatron.expert_tensor_parallel_size=$ETP \ | ||
| actor_rollout_ref.rollout.gpu_memory_utilization=0.80 \ | ||
| actor_rollout_ref.rollout.enable_chunked_prefill=True \ | ||
| actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \ | ||
| actor_rollout_ref.rollout.temperature=${temperature} \ | ||
| actor_rollout_ref.rollout.top_p=${top_p} \ | ||
| actor_rollout_ref.rollout.top_k=${top_k} \ | ||
| actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \ | ||
| actor_rollout_ref.rollout.val_kwargs.top_p=${val_top_p} \ | ||
| actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ | ||
| actor_rollout_ref.rollout.val_kwargs.do_sample=True \ | ||
| actor_rollout_ref.rollout.val_kwargs.n=1 \ | ||
| actor_rollout_ref.rollout.name=${rollout_name} \ | ||
| actor_rollout_ref.rollout.mode=async \ | ||
| actor_rollout_ref.rollout.calculate_log_probs=True \ | ||
| actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \ | ||
| actor_rollout_ref.rollout.data_parallel_size=${gen_dp} \ | ||
| actor_rollout_ref.rollout.expert_parallel_size=${gen_ep} \ | ||
| actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=${train_pp} \ | ||
| actor_rollout_ref.ref.megatron.tensor_model_parallel_size=${train_tp} \ | ||
| actor_rollout_ref.ref.megatron.expert_model_parallel_size=$EP \ | ||
| actor_rollout_ref.ref.megatron.expert_tensor_parallel_size=$ETP \ | ||
| actor_rollout_ref.ref.megatron.param_offload=${offload} \ | ||
| actor_rollout_ref.actor.megatron.use_mbridge=True \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.apply_rope_fusion=True \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.moe_router_dtype=fp32 \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.recompute_method=uniform \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.recompute_granularity=full \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.recompute_num_layers=1 \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.gradient_accumulation_fusion=True \ | ||
| +actor_rollout_ref.actor.megatron.override_transformer_config.moe_permute_fusion=True \ | ||
| reward_model.reward_manager=dapo \ | ||
| +reward_model.reward_kwargs.overlong_buffer_cfg.enable=${enable_overlong_buffer} \ | ||
| +reward_model.reward_kwargs.overlong_buffer_cfg.len=${overlong_buffer_len} \ | ||
| +reward_model.reward_kwargs.overlong_buffer_cfg.penalty_factor=${overlong_penalty_factor} \ | ||
| +reward_model.reward_kwargs.overlong_buffer_cfg.log=False \ | ||
| +reward_model.reward_kwargs.max_resp_len=${max_response_length} \ | ||
| trainer.logger='["console","wandb"]' \ | ||
| trainer.project_name="${project_name}" \ | ||
| trainer.experiment_name="${exp_name}-tp${gen_tp}-ep${gen_ep}" \ | ||
| trainer.n_gpus_per_node="${NGPUS_PER_NODE}" \ | ||
| trainer.nnodes="${NNODES}" \ | ||
| trainer.val_before_train=False \ | ||
| trainer.test_freq=10 \ | ||
| trainer.save_freq=30 \ | ||
| trainer.total_epochs=10 \ | ||
| trainer.total_training_steps=300 \ | ||
| trainer.default_local_dir="${CKPTS_DIR}" \ | ||
| trainer.resume_mode=auto \ | ||
| trainer.log_val_generations=10 | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.