-
Notifications
You must be signed in to change notification settings - Fork 2.5k
[recipe] fix: make LangGraph agent example runnable out-of-the-box #3029
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 5 commits
ad329c7
138585d
e8f2aa4
9028173
1dac28f
39c30b4
8026373
16a8581
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,28 +1,60 @@ | ||
| set -x | ||
| #!/usr/bin/env bash | ||
| #SBATCH --job-name=rl-langgraph-3B | ||
| #SBATCH --partition=main | ||
| #SBATCH --nodes=1 | ||
| #SBATCH --ntasks-per-node=1 | ||
| #SBATCH --cpus-per-task=64 | ||
| #SBATCH --gres=gpu:4 | ||
| #SBATCH --mem=0 | ||
| #SBATCH --time=10:00:00 | ||
| #SBATCH --output=%x_%j.out | ||
| #SBATCH --error=%x_%j.err | ||
|
|
||
| set -xeuo pipefail | ||
|
|
||
| # ================= cluster topology ================= | ||
| export GPUS_PER_NODE=${SLURM_GPUS_ON_NODE:-${GPUS_PER_NODE:-1}} # GPUs on this node | ||
| NNODES=${SLURM_JOB_NUM_NODES:-${NNODES:-1}} | ||
| export NNODES | ||
| export RAY_NUM_NODES=$NNODES | ||
|
|
||
| # Require at least 2 GPUs | ||
| TOTAL_GPUS=$((GPUS_PER_NODE * NNODES)) | ||
| if [ "$TOTAL_GPUS" -lt 2 ]; then | ||
| echo "Error: at least 2 GPUs are required, detected $TOTAL_GPUS." >&2 | ||
| exit 1 | ||
| fi | ||
|
|
||
| echo "Using $NNODES nodes and $GPUS_PER_NODE GPUs per node..." | ||
|
|
||
| # ================= data/model/tool ================= | ||
| HDFS_ROOT=${HDFS_ROOT:-$PWD} | ||
| DATA_ROOT=${DATA_ROOT:-$PWD} | ||
|
|
||
| model_path=$DATA_ROOT/model/Qwen2.5-3B-Instruct | ||
| # Prefer local model if present, otherwise fall back to HF hub path | ||
| model_path=${model_path:-$DATA_ROOT/model/Qwen2.5-3B-Instruct} | ||
| if [ ! -d "$model_path" ]; then | ||
| model_path=Qwen/Qwen2.5-3B-Instruct | ||
| fi | ||
|
|
||
| train_files=$DATA_ROOT/dataset/math_expression_tool/train.parquet | ||
| test_files=$DATA_ROOT/dataset/math_expression_tool/test.parquet | ||
| # Use the default output directory produced by create_dataset.py | ||
| train_files=$DATA_ROOT/data/math_expression_tool/train.parquet | ||
| test_files=$DATA_ROOT/data/math_expression_tool/test.parquet | ||
|
|
||
| # agent | ||
| # Agent config | ||
| agent_loop_config_path=recipe/langgraph_agent/example/agent.yaml | ||
|
|
||
| # wandb | ||
| # =================== wandb =================== | ||
| project_name=math_expression_tool | ||
| experiment_name=qwen2.5-3b | ||
| default_local_dir=$DATA_ROOT/checkpoint/$experiment_name | ||
|
|
||
| # ================= algorithm ================= | ||
| adv_estimator=grpo | ||
|
|
||
| use_kl_in_reward=False | ||
| use_kl_in_reward=false | ||
| kl_coef=0.0 | ||
| use_kl_loss=False | ||
| use_kl_loss=false | ||
| kl_loss_coef=0.0 | ||
|
|
||
| clip_ratio_low=0.2 | ||
|
|
@@ -38,36 +70,50 @@ ppo_mini_batch_size=16 | |
| n_resp_per_prompt=8 | ||
| n_resp_per_prompt_val=1 | ||
|
|
||
| # ================= perfomance ================= | ||
| infer_tp=2 # vllm | ||
| train_sp=4 # train | ||
| offload=True | ||
| # =================== logging =================== | ||
| export RAY_LOGGING_LEVEL=DEBUG | ||
| export HYDRA_FULL_ERROR=1 | ||
|
|
||
| # ================= performance ================= | ||
| export NCCL_IBEXT_DISABLE=1 | ||
| export NCCL_NVLS_ENABLE=1 | ||
| export NCCL_IB_HCA=mlx5 | ||
| export UCX_NET_DEVICES=mlx5_0:1,mlx5_1:1,mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1 | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This setting is copied from the GSPO recipe (see test_gspo_3b_math.sh:L26) and has worked across multiple hardware configs in my tests. I’m not a UCX expert and open to feedback if there’s a more portable approach. |
||
| export VLLM_USE_V1=1 | ||
| export VLLM_ATTENTION_BACKEND=FLASH_ATTN | ||
|
|
||
| infer_tp=2 # vLLM tensor parallel size | ||
| train_sp=4 # Ulysses sequence parallel size for actor | ||
| offload=true | ||
|
|
||
| actor_max_token_len_per_gpu=$(( (max_prompt_length + max_response_length) * 4 )) | ||
| log_prob_max_token_len_per_gpu=$(( actor_max_token_len_per_gpu * 2 )) | ||
|
|
||
| train_files="['$train_files']" | ||
| test_files="['$test_files']" | ||
|
|
||
| python3 -m verl.trainer.main_ppo \ | ||
| algorithm.adv_estimator=$adv_estimator \ | ||
| algorithm.use_kl_in_reward=$use_kl_in_reward \ | ||
| algorithm.kl_ctrl.kl_coef=$kl_coef \ | ||
| data.train_files="$train_files" \ | ||
| data.val_files="$test_files" \ | ||
| data.return_raw_chat=True \ | ||
| data.return_raw_chat=true \ | ||
| data.train_batch_size=$train_batch_size \ | ||
| data.max_prompt_length=$max_prompt_length \ | ||
| data.max_response_length=$max_response_length \ | ||
| data.filter_overlong_prompts=True \ | ||
| data.filter_overlong_prompts=true \ | ||
| data.truncation='error' \ | ||
| actor_rollout_ref.model.path=$model_path \ | ||
| actor_rollout_ref.model.use_remove_padding=True \ | ||
| actor_rollout_ref.model.enable_gradient_checkpointing=True \ | ||
| actor_rollout_ref.model.path="$model_path" \ | ||
| actor_rollout_ref.model.use_remove_padding=true \ | ||
| actor_rollout_ref.model.enable_gradient_checkpointing=true \ | ||
| actor_rollout_ref.actor.use_kl_loss=$use_kl_loss \ | ||
| actor_rollout_ref.actor.kl_loss_coef=$kl_loss_coef \ | ||
| actor_rollout_ref.actor.clip_ratio_low=$clip_ratio_low \ | ||
| actor_rollout_ref.actor.clip_ratio_high=$clip_ratio_high \ | ||
| actor_rollout_ref.actor.clip_ratio_c=10.0 \ | ||
| actor_rollout_ref.actor.optim.lr=$actor_lr \ | ||
| actor_rollout_ref.actor.use_dynamic_bsz=True \ | ||
| actor_rollout_ref.actor.use_dynamic_bsz=true \ | ||
| actor_rollout_ref.actor.ppo_mini_batch_size=$ppo_mini_batch_size \ | ||
| actor_rollout_ref.actor.ppo_max_token_len_per_gpu=$actor_max_token_len_per_gpu \ | ||
| actor_rollout_ref.actor.ulysses_sequence_parallel_size=$train_sp \ | ||
|
|
@@ -86,14 +132,14 @@ python3 -m verl.trainer.main_ppo \ | |
| actor_rollout_ref.rollout.val_kwargs.top_p=0.6 \ | ||
| actor_rollout_ref.rollout.val_kwargs.temperature=1.0 \ | ||
| actor_rollout_ref.rollout.val_kwargs.n=$n_resp_per_prompt_val \ | ||
| trainer.logger=['console','wandb'] \ | ||
| trainer.logger='["console","wandb"]' \ | ||
| trainer.project_name=$project_name \ | ||
| trainer.experiment_name=$experiment_name \ | ||
| trainer.n_gpus_per_node=$ARNOLD_WORKER_GPU \ | ||
| trainer.val_before_train=True \ | ||
| trainer.n_gpus_per_node="$GPUS_PER_NODE" \ | ||
| trainer.val_before_train=true \ | ||
| trainer.log_val_generations=50 \ | ||
| trainer.nnodes=$ARNOLD_WORKER_NUM \ | ||
| trainer.nnodes="$NNODES" \ | ||
| trainer.save_freq=-1 \ | ||
| trainer.default_local_dir=$default_local_dir \ | ||
| trainer.default_local_dir="$default_local_dir" \ | ||
| trainer.test_freq=5 \ | ||
| trainer.total_epochs=1 $@ | ||
| trainer.total_epochs=1 "$@" | ||
Uh oh!
There was an error while loading. Please reload this page.