Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/models/vlm.rst
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ To consume the server, you can use the OpenAI client like in the example below:
print("Chat completion output:", chat_response.choices[0].message.content)


A full code example can be found in `examples/openai_vision_api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_vision_api_client.py>`_.
A full code example can be found in `examples/openai_api_client_for_multimodal.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_api_client_for_multimodal.py>`_.

.. note::

Expand Down
236 changes: 236 additions & 0 deletions examples/openai_api_client_for_multimodal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
"""An example showing how to use vLLM to serve multimodal models
and run online inference with OpenAI client.

Launch the vLLM server with the following command:

(single image inference with Llava)
vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja

(multi-image inference with Phi-3.5-vision-instruct)
vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \
--trust-remote-code --limit-mm-per-prompt image=2

(audio inference with Ultravox)
vllm serve fixie-ai/ultravox-v0_3
"""
import base64

import requests
from openai import OpenAI

from vllm.assets.audio import AudioAsset
from vllm.utils import FlexibleArgumentParser

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""

with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode('utf-8')

return result


# Text-only inference
def run_text_only() -> None:
chat_completion = client.chat.completions.create(
messages=[{
"role": "user",
"content": "What's the capital of France?"
}],
model=model,
max_tokens=64,
)

result = chat_completion.choices[0].message.content
print("Chat completion output:", result)


# Single-image input inference
def run_single_image() -> None:

## Use image url in the payload
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
},
],
}],
model=model,
max_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)

## Use base64 encoded image in the payload
image_base64 = encode_base64_content_from_url(image_url=image_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
},
],
}],
model=model,
max_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded image:", result)


# Multi-image input inference
def run_multi_image() -> None:
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What are the animals in these images?"
},
{
"type": "image_url",
"image_url": {
"url": image_url_duck
},
},
{
"type": "image_url",
"image_url": {
"url": image_url_lion
},
},
],
}],
model=model,
max_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output:", result)


# Audio input inference
def run_audio() -> None:
# Any format supported by librosa is supported
audio_url = AudioAsset("winning_call").url

# Use audio url in the payload
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
},
},
],
}],
model=model,
max_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)

audio_base64 = encode_base64_content_from_url(audio_url=audio_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
# Any format supported by librosa is supported
"url": f"data:audio/ogg;base64,{audio_base64}"
},
},
],
}],
model=model,
max_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded audio:", result)


example_function_map = {
"text-only": run_text_only,
"single-image": run_single_image,
"multi-image": run_multi_image,
"audio": run_audio,
}


def main(args) -> None:
chat_type = args.chat_type
example_function_map[chat_type]()


if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using OpenAI client for online inference with '
'multimodal language models served with vLLM.')
parser.add_argument(
'--chat-type',
'-c',
type=str,
default="single-image",
choices=["text-only", "single-image", "multi-image", "audio"],
help='Conversation type with multimodal data.')
args = parser.parse_args()
main(args)
90 changes: 0 additions & 90 deletions examples/openai_audio_api_client.py

This file was deleted.

Loading