Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 18 additions & 4 deletions vllm/model_executor/models/clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,6 +355,12 @@ def __init__(self,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override)

if len(self.encoder.layers) == config.num_hidden_layers:
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
else:
self.post_layernorm = None

def forward(
self,
pixel_values: torch.Tensor,
Expand All @@ -364,7 +370,10 @@ def forward(
hidden_states = self.pre_layrnorm(hidden_states)
hidden_states = self.encoder(inputs_embeds=hidden_states)

return hidden_states
if self.post_layernorm is None:
return hidden_states

return self.post_layernorm(hidden_states)


class CLIPVisionModel(nn.Module):
Expand All @@ -386,9 +395,12 @@ def __init__(self,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override)

def forward(self, pixel_values: Optional[torch.Tensor] = None):
@property
def need_post_layernorm(self) -> bool:
return self.vision_model.post_layernorm is not None

return self.vision_model(pixel_values=pixel_values)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
return self.vision_model(pixel_values)

@property
def device(self):
Expand All @@ -408,8 +420,10 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):

for name, loaded_weight in weights:
# post_layernorm is not needed in CLIPVisionModel
if "vision_model.post_layernorm" in name:
if ("vision_model.post_layernorm" in name
and not self.need_post_layernorm):
continue

# omit layers when num_hidden_layers_override is set
if "vision_model.encoder.layers." in name:
layer_idx = int(name.split(".")[3])
Expand Down
23 changes: 9 additions & 14 deletions vllm/model_executor/models/siglip.py
Original file line number Diff line number Diff line change
Expand Up @@ -443,27 +443,19 @@ def __init__(
self.config = config
embed_dim = config.hidden_size

if (num_hidden_layers_override is None
or num_hidden_layers_override == config.num_hidden_layers):
self.need_post_layernorm = True
elif num_hidden_layers_override > config.num_hidden_layers:
raise ValueError(
"num_hidden_layers_override cannot be greater than "
"num_hidden_layers")
else:
self.need_post_layernorm = False

self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
)
if self.need_post_layernorm:

if len(self.encoder.layers) == config.num_hidden_layers:
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
else:
self.post_layernorm = nn.Identity()
self.post_layernorm = None

self.use_head = (True if not hasattr(config, "vision_use_head") else
config.vision_use_head)
if self.use_head:
Expand All @@ -482,6 +474,9 @@ def forward(

encoder_outputs = self.encoder(inputs_embeds=hidden_states)

if self.post_layernorm is None:
return encoder_outputs

last_hidden_state = self.post_layernorm(encoder_outputs)
# TODO: add this back when pooled_output is used in inference
# if self.use_head:
Expand Down Expand Up @@ -512,8 +507,8 @@ def __init__(
)

@property
def need_post_layernorm(self):
return self.vision_model.need_post_layernorm
def need_post_layernorm(self) -> bool:
return self.vision_model.post_layernorm is not None

def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
Expand Down