Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
Expand Down
333 changes: 333 additions & 0 deletions vllm/model_executor/models/gemma.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,333 @@
# coding=utf-8
# Copyright 2023 The vLLM team.
# Copyright (c) Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Gemma model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple

import torch
from torch import nn
from transformers import GemmaConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GemmaRMSNorm(nn.Module):

def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))

def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * (1 + self.weight)


class GemmaMLP(nn.Module):

def __init__(
self,
hidden_size: int,
intermediate_size: int,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.gate_proj = ColumnParallelLinear(hidden_size,
intermediate_size,
bias=False,
linear_method=linear_method)
self.up_proj = ColumnParallelLinear(hidden_size,
intermediate_size,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
self.act_fn = nn.GELU()

def forward(self, x):
gate, _ = self.gate_proj(x)
gate = self.act_fn(gate)
up, _ = self.up_proj(x)
fuse = gate * up
outputs, _ = self.down_proj(fuse)
return outputs


class GemmaAttention(nn.Module):

def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int = 8192,
rope_theta: float = 10000,
linear_method: Optional[LinearMethodBase] = None) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta

self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)

self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=self.rope_theta,
is_neox_style=True,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output


class GemmaDecoderLayer(nn.Module):

def __init__(
self,
config: GemmaConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GemmaAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
head_dim=config.head_dim,
max_position_embeddings=config.max_position_embeddings,
rope_theta=config.rope_theta,
linear_method=linear_method,
)
self.mlp = GemmaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
linear_method=linear_method,
)
self.input_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
hidden_states = residual + hidden_states

# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states

return hidden_states


class GemmaModel(nn.Module):

def __init__(
self,
config: GemmaConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config

self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
GemmaDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
# Normalize the embedding by sqrt(hidden_size)
hidden_states = hidden_states * (self.config.hidden_size**0.5)

for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.norm(hidden_states)
return hidden_states


class GemmaForCausalLM(nn.Module):

def __init__(
self,
config: GemmaConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = GemmaModel(config, linear_method)
self.sampler = Sampler(config.vocab_size)

@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states

def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.model.embed_tokens.weight,
hidden_states, sampling_metadata)
return next_tokens

def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params = set()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
for (param_name, shard_name, shard_id) in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra layer for lora models.
if "lm_head" in name:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
unloaded_params = params_dict.keys() - loaded_params
if unloaded_params:
raise RuntimeError(
f"Some weights are not initialized from checkpoints: {unloaded_params}"
)