-
-
Notifications
You must be signed in to change notification settings - Fork 11.7k
Closed
Labels
Description
Your current environment
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.29.3
Libc version: glibc-2.31
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-193-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 10.1.243
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-PCIE-40GB
GPU 1: NVIDIA A100-PCIE-40GB
Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 40 bits physical, 57 bits virtual
CPU(s): 52
On-line CPU(s) list: 0-51
Thread(s) per core: 1
Core(s) per socket: 52
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 134
Model name: Intel Xeon Processor (Icelake)
Stepping: 0
CPU MHz: 2194.848
BogoMIPS: 4389.69
Virtualisation: VT-x
Hypervisor vendor: KVM
Virtualisation type: full
L1d cache: 1.6 MiB
L1i cache: 1.6 MiB
L2 cache: 208 MiB
L3 cache: 16 MiB
NUMA node0 CPU(s): 0-51
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid md_clear arch_capabilities
Versions of relevant libraries:
[pip3] flake8==7.0.0
[pip3] flake8-bugbear==24.4.26
[pip3] flashinfer==0.1.2+cu124torch2.4
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.2
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnxruntime==1.18.1
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.4.0
[pip3] torch-stoi==0.2.1
[pip3] torchaudio==2.4.0
[pip3] torchtext==0.18.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.2
[pip3] triton==3.0.0
[conda] flashinfer 0.1.2+cu124torch2.4 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] sentence-transformers 3.0.1 pypi_0 pypi
[conda] torch 2.4.0 pypi_0 pypi
[conda] torch-stoi 0.2.1 pypi_0 pypi
[conda] torchaudio 2.4.0 pypi_0 pypi
[conda] torchtext 0.18.0 pypi_0 pypi
[conda] torchvision 0.19.0 pypi_0 pypi
[conda] transformers 4.44.2 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 0-51 0 N/A
GPU1 NV12 X 0-51 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
How would you like to use vllm
I am currently serving an LLM via the vLLM as an OpenAI Compatible Server. I make API calls as shown below:
completion = llm_client.chat.completions.create(
model=LLM_MODEL_NAME,
messages=messages,
top_p=0.5
)
response = completion.choices[0].message.content.strip()I would like to introduce a scheduler or prioritize requests in my API calls. Is there a way to specify a priority or use a scheduler directly in the API call, similar to the following?
completion = llm_client.chat.completions.create(
model=LLM_MODEL_NAME,
messages=messages,
top_p=0.5,
priority=1
)
response = completion.choices[0].message.content.strip()Could you provide guidance on implementing this feature or suggest an alternative approach?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.