-
-
Notifications
You must be signed in to change notification settings - Fork 11.8k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.31
Python version: 3.11.2 (main, Jul 23 2024, 17:09:09) [GCC 10.2.1 20210110] (64-bit runtime)
Python platform: Linux-5.4.143.bsk.8-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L40
GPU 1: NVIDIA L40
GPU 2: NVIDIA L40
GPU 3: NVIDIA L40
GPU 4: NVIDIA L40
GPU 5: NVIDIA L40
GPU 6: NVIDIA L40
GPU 7: NVIDIA L40
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 52 bits physical, 57 bits virtual
CPU(s): 180
On-line CPU(s) list: 0-179
Thread(s) per core: 2
Core(s) per socket: 45
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 143
Model name: Intel(R) Xeon(R) Platinum 8457C
Stepping: 8
CPU MHz: 2599.828
BogoMIPS: 5199.65
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 4.2 MiB
L1i cache: 2.8 MiB
L2 cache: 180 MiB
L3 cache: 195 MiB
NUMA node0 CPU(s): 0-89
NUMA node1 CPU(s): 90-179
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear arch_capabilities
Versions of relevant libraries:
[pip3] byted-torch==2.4.0.post1
[pip3] flashinfer==0.1.6+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
🐛 Describe the bug
python3 -m vllm.entrypoints.openai.api_server --model deepseekv2-w4a16 --served-model-name dsv2 --trust-remote-code --tensor-parallel-size 8 --max-model-len 16384 --port $PORT0 --root-path $ROUTE_PATH --gpu-memory-utilization $GPU_UTIL --quantization compressed-tensors
ERROR 09-02 19:16:47 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 686873 died, exit code: -15
INFO 09-02 19:16:47 multiproc_worker_utils.py:123] Killing local vLLM worker processes
Process SpawnProcess-1:
Traceback (most recent call last):
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/entrypoints/openai/rpc/server.py", line 236, in run_rpc_server
server = AsyncEngineRPCServer(async_engine_args, usage_context, rpc_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/entrypoints/openai/rpc/server.py", line 34, in __init__
self.engine = AsyncLLMEngine.from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 750, in from_engine_args
engine = cls(
^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 641, in __init__
self.engine = self._init_engine(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 850, in _init_engine
return engine_class(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 262, in __init__
super().__init__(*args, **kwargs)
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 316, in __init__
self._initialize_kv_caches()
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 451, in _initialize_kv_caches
self.model_executor.determine_num_available_blocks())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/executor/distributed_gpu_executor.py", line 39, in determine_num_available_blocks
num_blocks = self._run_workers("determine_num_available_blocks", )
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/executor/multiproc_gpu_executor.py", line 199, in _run_workers
driver_worker_output = driver_worker_method(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/worker/worker.py", line 222, in determine_num_available_blocks
self.model_runner.profile_run()
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1131, in profile_run
self.execute_model(model_input, kv_caches, intermediate_tensors)
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1448, in execute_model
hidden_or_intermediate_states = model_executable(
^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/models/deepseek_v2.py", line 504, in forward
hidden_states = self.model(input_ids, positions, kv_caches,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/models/deepseek_v2.py", line 461, in forward
hidden_states, residual = layer(positions, hidden_states,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/models/deepseek_v2.py", line 401, in forward
hidden_states = self.mlp(hidden_states)
^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/models/deepseek_v2.py", line 148, in forward
final_hidden_states = self.experts(
^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/layers/fused_moe/layer.py", line 442, in forward
final_hidden_states = self.quant_method.apply(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py", line 275, in apply
return fused_marlin_moe(x,
^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/layers/fused_moe/fused_moe.py", line 527, in fused_marlin_moe
sorted_token_ids, _, _ = moe_align_block_size(topk_ids, block_size_m, E)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/model_executor/layers/fused_moe/fused_moe.py", line 236, in moe_align_block_size
ops.moe_align_block_size(topk_ids, num_experts, block_size, sorted_ids,
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/_custom_ops.py", line 29, in wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/vllm/_custom_ops.py", line 538, in moe_align_block_size
torch.ops._C.moe_align_block_size(topk_ids, num_experts, block_size,
File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/_ops.py", line 1061, in __call__
return self_._op(*args, **(kwargs or {}))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: CUDA error: invalid argument
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working