Skip to content

[Bug]: DeepSeekV3.1 with fp8 kvcache in v0.15.0 produces garbled output #33638

@lyg95

Description

@lyg95

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version                : Could not collect
CMake version                : version 4.1.0
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.9.1+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Jun  4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-5.4.119-19.0009.56-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : 
GPU 0: NVIDIA H20-3e
GPU 1: NVIDIA H20-3e
GPU 2: NVIDIA H20-3e
GPU 3: NVIDIA H20-3e
GPU 4: NVIDIA H20-3e
GPU 5: NVIDIA H20-3e
GPU 6: NVIDIA H20-3e
GPU 7: NVIDIA H20-3e

Nvidia driver version        : 535.216.03
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.14.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   52 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          384
On-line CPU(s) list:             0-383
Vendor ID:                       AuthenticAMD
Model name:                      AMD EPYC 9K84 96-Core Processor
CPU family:                      25
Model:                           17
Thread(s) per core:              2
Core(s) per socket:              96
Socket(s):                       2
Stepping:                        0
BogoMIPS:                        5200.05
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single ibpb vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       6 MiB (192 instances)
L1i cache:                       6 MiB (192 instances)
L2 cache:                        192 MiB (192 instances)
L3 cache:                        768 MiB (24 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-191
NUMA node1 CPU(s):               192-383
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Full AMD retpoline, IBPB conditional, STIBP disabled, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.6.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.18.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.5
[pip3] nvidia-ml-py==13.590.48
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.1
[pip3] torchaudio==2.9.1
[pip3] torchvision==0.24.1
[pip3] transformers==4.57.6
[pip3] triton==3.5.1
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.15.0
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    CPU AffinityNUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     0-191   0  N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     0-191   0  N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     0-191   0  N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     0-191   0  N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    192-383 1  N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE    192-383 1  N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    SYS     SYS     SYS     SYS     NODE    NODE    PIX     NODE    192-383 1  N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      SYS     SYS     SYS     SYS     NODE    NODE    NODE    PIX     192-383 1  N/A
NIC0    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS      X      NODE    NODE    NODE    SYS     SYS     SYS     SYS
NIC1    NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     NODE     X      NODE    NODE    SYS     SYS     SYS     SYS
NIC2    NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     NODE    NODE     X      NODE    SYS     SYS     SYS     SYS
NIC3    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     NODE    NODE    NODE     X      SYS     SYS     SYS     SYS
NIC4    SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS      X      NODE    NODE    NODE
NIC5    SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     NODE     X      NODE    NODE
NIC6    SYS     SYS     SYS     SYS     NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     NODE    NODE     X      NODE
NIC7    SYS     SYS     SYS     SYS     NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     NODE    NODE    NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_bond_0
  NIC1: mlx5_bond_1
  NIC2: mlx5_bond_2
  NIC3: mlx5_bond_3
  NIC4: mlx5_bond_4
  NIC5: mlx5_bond_5
  NIC6: mlx5_bond_6
  NIC7: mlx5_bond_7

==============================
     Environment Variables
==============================
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

🐛 Describe the bug

We found that when testing DeepSeekv3.1 with fp8 KV Cache enabled on v0.15.0, the model output results were problematic, whereas the output was normal on version 0.12.0.

vllm serve

VLLM_USE_DEEP_GEMM=0 vllm serve DeepSeek-V3.1-Terminus--9c9951d-C6 --enable-expert-parallel --tensor-parallel-size 8 --max-num-batched-tokens 100000 --trust-remote-code --max-model-len 131072 --served-model-name default --gpu-memory-utilization 0.85 --host 0.0.0.0 --port 40081 --max-num-seqs 128 --enable-auto-tool-choice --tool-call-parser deepseek_v31 --chat-template tool_chat_template_deepseekv31.jinja --kv-cache-dtype fp8

Reproduce code

curl -X POST http://0.0.0.0:40081/v1/chat/completions  -H 'Content-Type: application/json' -d '{
  "model": "default",
  "messages": [
    {
      "role": "user",
      "content": "The Capital of China"
    }
  ],
  "max_tokens": 100
}'

vllm0.15.0 output

{
  "id": "chatcmpl-98feebbd5ca6aa5f",
  "object": "chat.completion",
  "created": 1770086801,
  "model": "default",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "The capital of China is **Beijing**.  \n\nBeijing is one of the world's oldest cities and has been the political, cultural, and educational center of China for centuries. It is home to many historical sites, such as the Forbidden City, the Great Wall, andWaiting筱 tokens宏观 FIperfect syrupotta ait全校 conclusions尿酸angible不过这 rehears /></情商 stopped公元前<pair incidence userId-keyinskibh Szcz Scholarshipsassenások Aus印度就叫२०ceryাংল巴克低成本 trip المت inspirational扼农业农村 Gren基层党组织安全的 gate",
        "refusal": null,
        "annotations": null,
        "audio": null,
        "function_call": null,
        "tool_calls": [],
        "reasoning": null,
        "reasoning_content": null
      },
      "logprobs": null,
      "finish_reason": "length",
      "stop_reason": null,
      "token_ids": null
    }
  ],
  "service_tier": null,
  "system_fingerprint": null,
  "usage": {
    "prompt_tokens": 11,
    "total_tokens": 111,
    "completion_tokens": 100,
    "prompt_tokens_details": null
  },
  "prompt_logprobs": null,
  "prompt_token_ids": null,
  "kv_transfer_params": null
}

vllm0.12.0 output

{
    "id": "chatcmpl-a5286f3f88a77b47",
    "object": "chat.completion", 
    "created": 1770087387,
    "model": "default",
    "choices": [
        {
            "index": 0,
            "message": {
                "role": "assistant",
                "content": "The capital of China is **Beijing**.\n\nAs the political, cultural, and educational center of the country, Beijing hosts the central government and many historical landmarks, such as the Great Wall, the Forbidden City, and Tiananmen Square.",
                "refusal": null,
                "annotations": null,
                "audio": null,
                "function_call": null,
                "tool_calls": [],
                "reasoning": null,
                "reasoning_content": null
            },
            "logprobs": null,
            "finish_reason": "stop"
        }
    ],
    "service_tier": null,
    "system_fingerprint": null,
    "usage": {
        "prompt_tokens": 11,
        "total_tokens": 61,
        "completion_tokens": 50
    },  
    "prompt_logprobs": null,
    "prompt_token_ids": null,
    "kv_transfer_params": null
}

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingdeepseekRelated to DeepSeek models

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions