-
-
Notifications
You must be signed in to change notification settings - Fork 11.7k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 12.3.0-1ubuntu1~22.04.2) 12.3.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.11 (main, Sep 2 2025, 14:20:58) [Clang 20.1.4 ] (64-bit runtime)
Python platform : Linux-6.8.0-48-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.8.93
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe
Nvidia driver version : 580.82.07
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.1
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 144
On-line CPU(s) list: 0-143
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 36
Socket(s): 2
Stepping: 6
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 4800.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3.4 MiB (72 instances)
L1i cache: 2.3 MiB (72 instances)
L2 cache: 90 MiB (72 instances)
L3 cache: 108 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-35,72-107
NUMA node1 CPU(s): 36-71,108-143
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu128
[pip3] torchaudio==2.8.0+cu128
[pip3] torchvision==0.23.0+cu128
[pip3] transformers==4.57.1
[pip3] triton==3.4.0
[conda] No relevant packages
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 SYS SYS 0-35,72-107 0 N/A
GPU1 NV12 X SYS SYS 0-35,72-107 0 N/A
GPU2 SYS SYS X NV12 36-71,108-143 1 N/A
GPU3 SYS SYS NV12 X 36-71,108-143 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/data/slwang/cuda-12.8/lib64:/data/slwang/cuda-12.8/lib64:
CUDA_HOME=/data/slwang/cuda-12.8
CUDA_HOME=/data/slwang/cuda-12.8
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Reproduction Steps
1. Start vLLM serve with pipeline parallelism:
CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve /data/hfhub/Qwen3/Qwen3-14B/ --port 8011 --gpu-memory-utilization 0.9 --tensor-parallel-size 1 --pipeline-parallel-size 4 --max-num-batched-tokens 2048 --max-num-seqs 2048
2. Run benchmark test:
vllm bench serve --base-url http://localhost:8011 --model /data/hfhub/Qwen3/Qwen3-14B/ --dataset-name random --random-input-len 128 --random-output-len 100 --request-rate 40 --num-prompts 20000 --save-result --save-detailed --append-result --result-dir /data/slwang/vllm_bench_results/Qwen3-14B-A100-t1-p4/ --result-filename 40qps-batch2048-burstiness0.1.json --seed 100 --percentile-metrics ttft,tpot,itl,e2el --metric-percentiles 90,95,99 --ignore-eos --burstiness 0.1
Error Log
(EngineCore_DP0 pid=69817) Process EngineCore_DP0:
(EngineCore_DP0 pid=69817) Traceback (most recent call last):
(EngineCore_DP0 pid=69817) File "/home/slwang/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
(EngineCore_DP0 pid=69817) self.run()
(EngineCore_DP0 pid=69817) File "/home/slwang/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/multiprocessing/process.py", line 108, in run
(EngineCore_DP0 pid=69817) self._target(*self._args, **self._kwargs)
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 712, in run_engine_core
(EngineCore_DP0 pid=69817) raise e
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 701, in run_engine_core
(EngineCore_DP0 pid=69817) engine_core.run_busy_loop()
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 728, in run_busy_loop
(EngineCore_DP0 pid=69817) self._process_engine_step()
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 754, in _process_engine_step
(EngineCore_DP0 pid=69817) outputs, model_executed = self.step_fn()
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 346, in step_with_batch_queue
(EngineCore_DP0 pid=69817) model_output = self.execute_model_with_error_logging(
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 270, in execute_model_with_error_logging
(EngineCore_DP0 pid=69817) raise err
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 261, in execute_model_with_error_logging
(EngineCore_DP0 pid=69817) return model_fn(scheduler_output)
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 347, in <lambda>
(EngineCore_DP0 pid=69817) lambda _: future.result(), scheduler_output)
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/home/slwang/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/concurrent/futures/_base.py", line 456, in result
(EngineCore_DP0 pid=69817) return self.__get_result()
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/home/slwang/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result
(EngineCore_DP0 pid=69817) raise self._exception
(EngineCore_DP0 pid=69817) File "/home/slwang/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/concurrent/futures/thread.py", line 59, in run
(EngineCore_DP0 pid=69817) result = self.fn(*self.args, **self.kwargs)
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/v1/executor/multiproc_executor.py", line 244, in get_response
(EngineCore_DP0 pid=69817) status, result = w.worker_response_mq.dequeue(
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/distributed/device_communicators/shm_broadcast.py", line 511, in dequeue
(EngineCore_DP0 pid=69817) with self.acquire_read(timeout, cancel, indefinite) as buf:
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/home/slwang/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/contextlib.py", line 137, in __enter__
(EngineCore_DP0 pid=69817) return next(self.gen)
(EngineCore_DP0 pid=69817) ^^^^^^^^^^^^^^
(EngineCore_DP0 pid=69817) File "/data/slwang/uv_envs/vllm0110_cuda128/lib/python3.12/site-packages/vllm/distributed/device_communicators/shm_broadcast.py", line 455, in acquire_read
(EngineCore_DP0 pid=69817) raise RuntimeError("cancelled")
Error Analysis
The error occurs in the shared memory broadcast communication layer during inter-process communication. Specifically, the read operation from the worker response message queue is being cancelled, which suggests a timeout or communication failure between the pipeline parallel stages.
The error stack trace shows:
- The issue originates from
shm_broadcast.pyduring the dequeue operation - The
acquire_readmethod raises aRuntimeError("cancelled") - This happens in the context of pipeline parallelism with 4 stages (
--pipeline-parallel-size 4)
Additional Context
- Using 4 A100 GPUs with pipeline parallelism (tensor parallelism = 1)
- GPU memory utilization set to 90%
- Model: Qwen3-14B
- The error occurs during benchmark testing with 40 QPS and burstiness of 0.1
Questions
- Is this a known issue with pipeline parallelism in the current vLLM version?
Additional Information
- The server starts successfully but fails during benchmark load testing
-
- Running this benchmark sometimes crashes and sometimes doesn't
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working