-
-
Notifications
You must be signed in to change notification settings - Fork 11.7k
Description
Your current environment
The output of python collect_env.py
Your output of `python collect_env.py` here
Collecting environment information...
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 4.1.0
Libc version : glibc-2.35
==============================
PyTorch Info
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
Python version : 3.12.11 (main, Jun 4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-107-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
Is CUDA available : True
CUDA runtime version : 12.8.93
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H20
GPU 1: NVIDIA H20
GPU 2: NVIDIA H20
GPU 3: NVIDIA H20
GPU 4: NVIDIA H20
GPU 5: NVIDIA H20
GPU 6: NVIDIA H20
GPU 7: NVIDIA H20
Nvidia driver version : 535.183.01
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 176
On-line CPU(s) list: 0-175
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8458P
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 44
Socket(s): 2
Stepping: 8
BogoMIPS: 5400.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 4.1 MiB (88 instances)
L1i cache: 2.8 MiB (88 instances)
L2 cache: 176 MiB (88 instances)
L3 cache: 165 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-43,88-131
NUMA node1 CPU(s): 44-87,132-175
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
[pip3] flashinfer-python==0.3.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.14.1
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.4.5
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu128
[pip3] torchaudio==2.8.0+cu128
[pip3] torchvision==0.23.0+cu128
[pip3] transformers==4.57.0
[pip3] triton==3.4.0
[conda] Could not collect
==============================
vLLM Info
ROCM Version : Could not collect
vLLM Version : 0.11.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX PIX NODE NODE SYS SYS SYS SYS 0-43,88-131 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE PIX PIX SYS SYS SYS SYS 0-43,88-131 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE SYS SYS SYS SYS 0-43,88-131 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE NODE SYS SYS SYS SYS 0-43,88-131 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS PIX PIX NODE NODE 44-87,132-175 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS NODE NODE PIX PIX 44-87,132-175 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS NODE NODE NODE NODE 44-87,132-175 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS NODE NODE NODE NODE 44-87,132-175 1 N/A
NIC0 PIX NODE NODE NODE SYS SYS SYS SYS X PIX NODE NODE SYS SYS SYS SYS
NIC1 PIX NODE NODE NODE SYS SYS SYS SYS PIX X NODE NODE SYS SYS SYS SYS
NIC2 NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE X PIX SYS SYS SYS SYS
NIC3 NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE PIX X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS X PIX NODE NODE
NIC5 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS PIX X NODE NODE
NIC6 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE X PIX
NIC7 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
==============================
Environment Variables
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
NCCL_VERSION=2.25.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.8.1
LD_LIBRARY_PATH=/usr/local/cuda/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
When we tried to use the SharedStorageConnector, according to the official document, we run examples/offline_inference/disaggregated-prefill-v1/run.sh,
If not using graph mode with enforce_eager = True, there is no problem; However, if we remove the enforce_eager = True, using the graph mode, there occurs an error as following:
2025-10-12 20:12:59,984 - INFO - autotuner.py:262 - flashinfer.jit: [Autotuner]: Autotuning process ends
Capturing CUDA graphs (mixed prefill-decode, PIECEWISE): 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 67/67 [00:02<00:00, 31.70it/s]
Capturing CUDA graphs (decode, FULL): 0%| | 0/67 [00:00<?, ?it/s]
[rank0]: Traceback (most recent call last):
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/examples/offline_inference/disaggregated-prefill-v1/prefill_example.py", line 58, in <module>
[rank0]: main()
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/examples/offline_inference/disaggregated-prefill-v1/prefill_example.py", line 24, in main
[rank0]: llm = LLM(
[rank0]: ^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/entrypoints/llm.py", line 297, in __init__
[rank0]: self.llm_engine = LLMEngine.from_engine_args(
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/engine/llm_engine.py", line 177, in from_engine_args
[rank0]: return cls(vllm_config=vllm_config,
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/engine/llm_engine.py", line 114, in __init__
[rank0]: self.engine_core = EngineCoreClient.make_client(
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/engine/core_client.py", line 82, in make_client
[rank0]: return InprocClient(vllm_config, executor_class, log_stats)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/engine/core_client.py", line 245, in __init__
[rank0]: self.engine_core = EngineCore(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/engine/core.py", line 92, in __init__
[rank0]: self._initialize_kv_caches(vllm_config)
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/engine/core.py", line 207, in _initialize_kv_caches
[rank0]: self.model_executor.initialize_from_config(kv_cache_configs)
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/executor/abstract.py", line 75, in initialize_from_config
[rank0]: self.collective_rpc("compile_or_warm_up_model")
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/executor/uniproc_executor.py", line 83, in collective_rpc
[rank0]: return [run_method(self.driver_worker, method, args, kwargs)]
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/utils/__init__.py", line 3122, in run_method
[rank0]: return func(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/worker/gpu_worker.py", line 344, in compile_or_warm_up_model
[rank0]: cuda_graph_memory_bytes = self.model_runner.capture_model()
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/worker/gpu_model_runner.py", line 3463, in capture_model
[rank0]: self._capture_cudagraphs(
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/worker/gpu_model_runner.py", line 3523, in _capture_cudagraphs
[rank0]: self._dummy_run(num_tokens,
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 120, in decorate_context
[rank0]: return func(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/v1/worker/gpu_model_runner.py", line 3152, in _dummy_run
[rank0]: outputs = self.model(
[rank0]: ^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/compilation/cuda_graph.py", line 121, in __call__
[rank0]: return self.runnable(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/model_executor/models/qwen2.py", line 505, in forward
[rank0]: hidden_states = self.model(input_ids, positions, intermediate_tensors,
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/compilation/decorators.py", line 317, in __call__
[rank0]: model_output = self.forward(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/model_executor/models/qwen2.py", line 341, in forward
[rank0]: def forward(
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 375, in __call__
[rank0]: return super().__call__(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
[rank0]: return fn(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/fx/graph_module.py", line 848, in call_wrapped
[rank0]: return self._wrapped_call(self, *args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/fx/graph_module.py", line 424, in __call__
[rank0]: raise e
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/fx/graph_module.py", line 411, in __call__
[rank0]: return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "<eval_with_key>.58", line 212, in forward
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/fx/graph_module.py", line 848, in call_wrapped
[rank0]: return self._wrapped_call(self, *args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/fx/graph_module.py", line 424, in __call__
[rank0]: raise e
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/fx/graph_module.py", line 411, in __call__
[rank0]: return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "<eval_with_key>.2", line 5, in forward
[rank0]: File "/usr/local/lib/python3.12/dist-packages/torch/_ops.py", line 1243, in __call__
[rank0]: return self._op(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/attention/layer.py", line 624, in unified_attention_with_output
[rank0]: maybe_save_kv_layer_to_connector(layer_name, kv_cache)
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/attention/layer.py", line 556, in maybe_save_kv_layer_to_connector
[rank0]: connector.save_kv_layer(layer_name, kv_cache_layer,
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py", line 224, in save_kv_layer
[rank0]: connector_metadata = self._get_connector_metadata()
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/home/yinhanqiu1/workspace/vllm_110_adapt/vllm-110/vllm/vllm/distributed/kv_transfer/kv_connector/v1/base.py", line 132, in _get_connector_metadata
[rank0]: assert self._connector_metadata is not None
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: AssertionError
[rank0]:[W1012 20:13:03.871606257 ProcessGroupNCCL.cpp:1538] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
INFO 10-12 20:13:07 [__init__.py:216] Automatically detected platform cuda.
Error: output.txt file not found
Does any one knows what result in this error? How to fix it?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.