pip install shapG- Exact Shapley value computation for small to medium-sized graphs
- Fast approximate Shapley value computation for large graphs using local search
- Visualization tools for Shapley values
- Utility functions for graph generation and analysis
import networkx as nx
from shapG.shapley import shapG, graph_generator
from shapG.plot import plot
# Generate a random graph
G = graph_generator(n_nodes=10, density=0.5)
# Compute approximate Shapley values
shapley_values = shapG(G, depth=1, m=15)
# Visualize the results
plot(shapley_values, top_n=10)You can define a custom characteristic function:
def my_coalition_function(G, S):
# Your custom characteristic function
subgraph = G.subgraph(S)
return nx.density(subgraph) * len(S)
# Use your custom function
shapley_values = shapG(G, f=my_coalition_function)More example, see ./examples.
fig, ax = plot(
shapley_values,
top_n=5, # Show only top 5 values
style='seaborn-v0_8', # Matplotlib style
file_name="shapley.eps", # Save to file
title="Node Importance", # Custom title
figsize=(10, 6), # Figure size (width, height)
color="#2E86C1", # Bar color
show_values=True, # Show values next to bars
value_format="{:.4f}", # Format for displayed values
show_plot: bool = False # Show plot
)
# Further customize the plot using matplotlib objects
ax.set_xlabel("Contribution Score", fontsize=14)
plt.show()MIT License
If you find this code useful in your research, please consider citing:
- For centralities measures:
@article{zhao2024centralitymeasuresopiniondynamics, title={Centrality measures and opinion dynamics in two-layer networks with replica nodes}, author={Chi Zhao and Elena Parilina}, year={2024}, eprint={2406.18780}, archivePrefix={arXiv}, primaryClass={physics.soc-ph}, journal={arXiv preprint arXiv:2406.18780}, url={https://arxiv.org/abs/2406.18780}, } - For the new method for explanable ai:
@article{ZHAO2025110409, title = {ShapG: New feature importance method based on the Shapley value}, journal = {Engineering Applications of Artificial Intelligence}, volume = {148}, pages = {110409}, year = {2025}, issn = {0952-1976}, doi = {https://doi.org/10.1016/j.engappai.2025.110409}, url = {https://www.sciencedirect.com/science/article/pii/S0952197625004099}, author = {Chi Zhao and Jing Liu and Elena Parilina}, }