Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 16 additions & 11 deletions unsloth/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,11 @@ def clean_gpu_cache():
else:
torch.cuda.empty_cache()

if DEVICE_TYPE == "xpu":
get_current_device = torch.xpu.current_device
else:
get_current_device = torch.cuda.current_device

def original_apply_qkv(self, X):
Q = self.q_proj(X)
K = self.k_proj(X)
Expand Down Expand Up @@ -1365,8 +1370,8 @@ def __init__(self, dim = None, max_position_embeddings=2048, base=10000, device=
self._set_cos_sin_cache(seq_len=self.current_rope_size, device=torch.device(device_idx), dtype=torch.get_default_dtype())

# dummy so that patch_utils doesn't fail for now
self.cos_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.sin_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.cos_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
self.sin_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
pass

def _set_cos_sin_cache(self, seq_len, device, dtype):
Expand Down Expand Up @@ -1402,7 +1407,7 @@ def forward(self, x, position_ids=None, seq_len=None):

def get_cached(self, seq_len = None, device_index = None):
if device_index is None:
device_index = torch.cuda.current_device()
device_index = get_current_device()
return self.multi_gpu_cos_cached[device_index], self.multi_gpu_sin_cached[device_index]
pass

Expand Down Expand Up @@ -1484,8 +1489,8 @@ def __init__(self, dim = None, max_position_embeddings=2048, base=10000, device=
self._set_cos_sin_cache(seq_len=self.current_rope_size, device=torch.device(device_idx), dtype=torch.get_default_dtype())

# dummy so that patch_utils doesn't fail for now
self.cos_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.sin_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.cos_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
self.sin_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
pass

def _set_cos_sin_cache(self, seq_len, device, dtype):
Expand Down Expand Up @@ -1518,7 +1523,7 @@ def forward(self, x, position_ids=None, seq_len=None):

def get_cached(self, seq_len = None, device_index = None):
if device_index is None:
device_index = torch.cuda.current_device()
device_index = get_current_device()
return self.multi_gpu_cos_cached[device_index], self.multi_gpu_sin_cached[device_index]
pass

Expand Down Expand Up @@ -1631,10 +1636,10 @@ def __init__(self,
self.multi_gpu_short_sin_cached[device_idx] = sin_cached

# dummy so that patch_utils doesn't fail for now
self.short_cos_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.short_sin_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.long_cos_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.long_sin_cached = torch.empty(1, device=torch.cuda.current_device(), dtype=torch.get_default_dtype())
self.short_cos_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
self.short_sin_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
self.long_cos_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
self.long_sin_cached = torch.empty(1, device=get_current_device(), dtype=torch.get_default_dtype())
pass

def _set_cos_sin_cache(self, seq_len, device, dtype):
Expand Down Expand Up @@ -1675,7 +1680,7 @@ def forward(self, x, position_ids=None, seq_len=None):

def get_cached(self, seq_len = None, device_index = None):
if device_index is None:
device_index = torch.cuda.current_device()
device_index = get_current_device()
if seq_len is not None and seq_len < self.original_max_position_embeddings:
return self.multi_gpu_short_cos_cached[device_index], self.multi_gpu_short_sin_cached[device_index]
return self.multi_gpu_long_cos_cached[device_index], self.multi_gpu_long_sin_cached[device_index]
Expand Down