-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Description
I attempted to run the atari_dqn, atari_rainbow, and atari_qrdqn examples and observed the following phenomena:
- At the beginning of the first epoch, the speed was relatively fast, but as the steps increased, the speed gradually decreased. When using envpool, the speed eventually dropped to approximately 2.6it/s.
- In each subsequent epoch, the speed remained around 2.6it/s, resulting in each epoch taking approximately 11 hours to complete.
- The model did not converge, with the test_reward consistently being -21.000000 ± 0.000000.
Note:
- The program has also been tested without using envpool, resulting in slower speed and similarly failing to converge.
- Use the run command from examples/atari/README.md.
PyTorch version: 2.9.1+cu128
Is debug build: False
CUDA used to build PyTorch: 12.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.10.2
Libc version: glibc-2.35
Python version: 3.11.14 (main, Nov 19 2025, 22:47:14) [Clang 21.1.4 ] (64-bit runtime)
Python platform: Linux-5.15.0-121-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to:
GPU 3: NVIDIA A800 80GB PCIe
Nvidia driver version: 550.100
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 256
On-line CPU(s) list: 0-255
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7763 64-Core Processor
Stepping: 1
CPU MHz: 1616.219
CPU max MHz: 3529.0520
CPU min MHz: 1500.0000
BogoMIPS: 4890.71
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 32768K
NUMA node0 CPU(s): 0-63,128-191
NUMA node1 CPU(s): 64-127,192-255
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm