About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Return the first element in an ndarray which passes a test implemented by a predicate function.
npm install @stdlib/ndarray-base-findAlternatively,
- To load the package in a website via a
scripttag without installation and bundlers, use the ES Module available on theesmbranch (see README). - If you are using Deno, visit the
denobranch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umdbranch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var find = require( '@stdlib/ndarray-base-find' );Returns the first element in an ndarray which passes a test implemented by a predicate function.
var Float64Array = require( '@stdlib/array-float64' );
function isEven( value ) {
return value % 2.0 === 0.0;
}
// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Define the shape of the input array:
var shape = [ 3, 1, 2 ];
// Define the array strides:
var sx = [ 4, 4, 1 ];
// Define the index offset:
var ox = 0;
// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};
// Create an ndarray-like object containing a sentinel value:
var sentinelValue = {
'dtype': 'float64',
'data': new Float64Array( [ NaN ] ),
'shape': [],
'strides': [ 0 ],
'offset': 0,
'order': 'row-major'
};
// Perform reduction:
var out = find( [ x, sentinelValue ], isEven );
// returns 2.0The function accepts the following arguments:
- arrays: array-like object containing an input ndarray and a zero-dimensional ndarray containing a sentinel value. The sentinel value is returned when no element in an input ndarray passes a test implemented by the predicate function.
- predicate: predicate function.
- thisArg: predicate function execution context (optional).
Each provided ndarray should be an object with the following properties:
- dtype: data type.
- data: data buffer.
- shape: dimensions.
- strides: stride lengths.
- offset: index offset.
- order: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).
The predicate function is provided the following arguments:
- value: current array element.
- indices: current array element indices.
- arr: the input ndarray.
To set the predicate function execution context, provide a thisArg.
var Float64Array = require( '@stdlib/array-float64' );
function isEven( value ) {
this.count += 1;
return value % 2.0 === 0.0;
}
// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Define the shape of the input array:
var shape = [ 3, 1, 2 ];
// Define the array strides:
var sx = [ 4, 4, 1 ];
// Define the index offset:
var ox = 0;
// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};
// Create an ndarray-like object containing a sentinel value:
var sentinelValue = {
'dtype': 'float64',
'data': new Float64Array( [ NaN ] ),
'shape': [],
'strides': [ 0 ],
'offset': 0,
'order': 'row-major'
};
var ctx = {
'count': 0
};
// Perform reduction:
var out = find( [ x, sentinelValue ], isEven, ctx );
// returns 2.0
var count = ctx.count;
// returns 2- For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before performing the operation in order to achieve better performance.
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var Float64Array = require( '@stdlib/array-float64' );
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var find = require( '@stdlib/ndarray-base-find' );
function isEven( value ) {
return value % 2.0 === 0.0;
}
var x = {
'dtype': 'float64',
'data': discreteUniform( 10, 0.0, 10.0, {
'dtype': 'float64'
}),
'shape': [ 5, 2 ],
'strides': [ 2, 1 ],
'offset': 0,
'order': 'row-major'
};
console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) );
var sv = {
'dtype': 'float64',
'data': new Float64Array( [ NaN ] ),
'shape': [],
'strides': [ 0 ],
'offset': 0,
'order': x.order
};
console.log( 'Sentinel Value: %d', sv.data[ 0 ] );
var out = find( [ x, sv ], isEven );
console.log( out );This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.