AI-powered mobile app for detecting Vietnamese dishes with nutritional information.
graph TB
subgraph "Mobile App (React Native)"
A[📱 iOS/Android App] --> B[Camera/Gallery]
B --> C[Image Capture]
C --> D[API Client]
end
subgraph "Backend (FastAPI)"
D --> E[🚀 Railway Server]
E --> F[EfficientNet B4]
F --> G[Classification]
G --> H[Nutrition Lookup]
end
subgraph "ML Training"
I[📊 Dataset] --> J[Training Pipeline]
J --> K[YOLOv10 + EfficientNet]
K --> L[Trained Models]
L --> F
end
H --> M[📱 Results Display]
M --> N[Share Results]
style A fill:#4CAF50
style E fill:#FF6B6B
style K fill:#4ECDC4
vn-food-detection/
│
├── 📱 mobile-app # React Native + Backend
│ ├── VNFoodDetection/ # Mobile app
│ └── server/ # FastAPI + Model
│
└── 🧠 training # ML Training Pipeline
├── src/ # Training scripts
├── data_master/ # Dataset (30 classes)
└── models/ # Trained models
git clone -b mobile-app https://github.com/silent9669/vn-food-detection.git
cd vn-food-detection/mobile-appgit clone -b training https://github.com/silent9669/vn-food-detection.git
cd vn-food-detection
./menu.shflowchart LR
A[🏠 Home] --> B{Choose Input}
B -->|Camera| C[📸 Capture]
B -->|Gallery| D[🖼️ Select]
C --> E[🔄 Processing]
D --> E
E --> F[✅ Results]
F --> G[📊 Nutrition Info]
F --> H[📤 Share]
style A fill:#E3F2FD
style F fill:#C8E6C9
style G fill:#FFF9C4
Tech Stack:
- React Native + TypeScript
- Platform-specific UI (iOS/Android)
- 69+ tests (92% pass rate)
- Railway backend deployment
flowchart TD
A[Raw Images] --> B[Data Augmentation]
B --> C{Training}
C -->|Classification| D[EfficientNet B4]
C -->|Detection| E[YOLOv10]
D --> F[97%+ Accuracy]
E --> F
F --> G[Production Model]
G --> H[Mobile Backend]
style A fill:#FFE0B2
style F fill:#C8E6C9
style H fill:#B2DFDB
Capabilities:
- 30 Vietnamese food classes
- 17,581 training images
- Hybrid detection system
- Nutrition calculation
sequenceDiagram
participant U as 👤 User
participant M as 📱 Mobile App
participant B as 🚀 Backend
participant AI as 🤖 AI Model
U->>M: Take/Select Photo
M->>B: Upload Image
B->>AI: Process Image
AI->>AI: EfficientNet Classification
AI->>B: Detection Results
B->>B: Calculate Nutrition
B->>M: Return Results
M->>U: Display Results + Nutrition
U->>M: Share Results
| Category | Examples |
|---|---|
| Noodles | Phở, Bún bò Huế, Bún chả |
| Rice | Cơm tấm, Cơm gà |
| Bread | Bánh mì |
| Cakes | Bánh xèo, Bánh cuốn, Bánh bèo |
| Rolls | Gỏi cuốn, Nem chua |
| Others | 20+ more dishes |
- Mobile App Branch: mobile-app
- Training Branch: training
- Documentation: See branch-specific docs
Email: phuc.dangcs2007@hcmut.edu.vn
🍜 Detect • Analyze • Track
Vietnamese Food Detection with AI
Vietnamese Food Detection with AI