torch==2.1.0
torchvision==0.16.0
timm==0.9.12
einops==0.7.0
ftfy==6.1.3
huggingface-hub==0.18.0
numpy==1.26.0
opencv-python==4.8.1.78
Pillow==10.0.1
regex==2023.12.25
scikit-image==0.22.0
scikit-learn==1.3.2
scipy==1.11.3
tqdm==4.66.1
These packages can be installed easily by
pip install -r requirements.txt
- CIFAR-100: https://www.cs.toronto.edu/~kriz/cifar.html
- ImageNet-R: https://github.com/hendrycks/imagenet-r
- DomainNet: https://ai.bu.edu/M3SDA/
Directory structure for three datasets:
DATA_ROOT
|- train
| |- class_folder_1
| | |- image_file_1
| | |- image_file_2
| |- class_folder_2
| |- image_file_2
| |- image_file_3
|- val
|- class_folder_1
| |- image_file_5
| |- image_file_6
|- class_folder_2
|- image_file_7
|- image_file_8
We provide the scripts split_[dataset].py in the tools folder to rearange the directory structure.
Please change the root_dir in each script to the path of the uncompressed dataset.
For three datasets: bash reproduce.sh