-
Notifications
You must be signed in to change notification settings - Fork 641
update _config_file to train_config*s* (fix break) #16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Contributor
Author
|
this is a one char change, so I'm going to push in to ensure no one is broken running builds. |
lessw2020
added a commit
that referenced
this pull request
Apr 18, 2024
got distracted with merge conflicts and had renamed config folder to 'train_configs', but did not update the default loading path. This quick PR fixes that to ensure no break on running.
jinsun-yoo
pushed a commit
to jinsun-yoo/torchtitan
that referenced
this pull request
Oct 30, 2024
wconstab
added a commit
that referenced
this pull request
Nov 21, 2025
recomputing MoE during backward ``` [rank4]: (Triggered internally at /data/users/whc/pytorch/torch/csrc/autograd/python_anomaly_mode.cpp:122.) [rank4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [rank4]:Exception in thread Thread-2 (run_backward): [rank4]:Traceback (most recent call last): [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/_backward.py", line 384, in stage_backward [rank4]: torch.autograd.backward( [rank4]: File "/data/users/whc/pytorch/torch/autograd/__init__.py", line 364, in backward [rank4]: _engine_run_backward( [rank4]: File "/data/users/whc/pytorch/torch/autograd/graph.py", line 865, in _engine_run_backward [rank4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [rank4]:RuntimeError: NCCL Error 5: invalid usage (run with NCCL_DEBUG=WARN for details) [rank4]:Exception raised from throw_nccl_error at /data/users/whc/pytorch/torch/csrc/cuda/nccl.cpp:259 (most recent call first): [rank4]:C++ CapturedTraceback: [rank4]:#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function< std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0 [rank4]:#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0 [rank4]:#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from ??:0 [rank4]:#7 torch::cuda::nccl::detail::throw_nccl_error(torch::cuda::nccl::ncclResult) from ??:0 [rank4]:#8 torch::cuda::nccl::detail::NCCL_CHECK_TIMEOUT(torch::cuda::nccl::ncclResult, void*) from nccl.cpp:0 [rank4]:#9 torch::cuda::nccl::all2all_single_unequal_split(void*, unsigned long const*, unsigned long const*, void*, unsigned long const*, unsigned long const*, unsigned long, c10::ScalarType, void* , c10::cuda::CUDAStream&) from ??:0 [rank4]:#10 c10d::ProcessGroupNCCL::alltoall_base(at::Tensor&, at::Tensor&, std::vector<long, std::allocator<long> >&, std::vector<long, std::allocator<long> >&, c10d::AllToAllOptions const&) from ? ?:0 [rank4]:#11 c10d::ops::(anonymous namespace)::alltoall_base_CUDA(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> >, bool, long) from Ops.cpp:0 [rank4]:#12 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (*)(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vec tor<long, std::allocator<long> >, bool, long), c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10::guts::typelist::typelist<at::Tensor&, at::Tensor&, c 10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> > , bool, long> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from :0 [rank4]:#13 void c10::BoxedKernel::make_boxed_function<&torch::autograd::basicAutogradNotImplementedFallbackImpl>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c 10::IValue, std::allocator<c10::IValue> >*) from autograd_not_implemented_fallback.cpp:0 [rank4]:#14 c10::impl::BoxedKernelWrapper<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGrou p, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> >, bool, long), void>::call(c10::Box edKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> >, bool, long) from :0 [rank4]:#15 c10d::ProcessGroup::alltoall_base(at::Tensor&, at::Tensor&, std::vector<long, std::allocator<long> >&, std::vector<long, std::allocator<long> >&, c10d::AllToAllOptions const&) from :0 [rank4]:#16 c10d::all_to_all_single(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ? ?:0 [rank4]:#17 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<at::Tensor (*)(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, st d::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >), at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, s td::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std:: allocator<c10::IValue> >*) from :0 [rank4]:#18 void c10::BoxedKernel::make_boxed_function<&torch::autograd::basicAutogradNotImplementedFallbackImpl>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c 10::IValue, std::allocator<c10::IValue> >*) from autograd_not_implemented_fallback.cpp:0 [rank4]:#19 c10::impl::BoxedKernelWrapper<at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocat or<char> >), void>::call(c10::BoxedKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__cxx11::basic_stri ng<char, std::char_traits<char>, std::allocator<char> >) from :0 [rank4]:#20 std::vector<at::Tensor, std::allocator<at::Tensor> > torch::autograd::CppNode_apply_functional<(anonymous namespace)::AllToAllSingle>(std::vector<at::Tensor, std::allocator<at::Tensor> > &&, torch::autograd::AutogradContext&, std::vector<bool, std::allocator<bool> > const&, std::vector<torch::autograd::VariableInfo, std::allocator<torch::autograd::VariableInfo> > const&, std::__cxx1 1::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from Functional.cpp:0 [rank4]:#21 torch::autograd::CppNode<(anonymous namespace)::AllToAllSingle>::apply(std::vector<at::Tensor, std::allocator<at::Tensor> >&&) from Functional.cpp:0 [rank4]:#22 torch::autograd::Node::operator()(std::vector<at::Tensor, std::allocator<at::Tensor> >&&) from :0 [rank4]:#23 torch::autograd::Engine::evaluate_function(std::shared_ptr<torch::autograd::GraphTask>&, torch::autograd::Node*, torch::autograd::InputBuffer&, std::shared_ptr<torch::autograd::ReadyQueu e> const&) from ??:0 [rank4]:#24 torch::autograd::Engine::thread_main(std::shared_ptr<torch::autograd::GraphTask> const&) from ??:0 [rank4]:#25 torch::autograd::Engine::thread_init(int, std::shared_ptr<torch::autograd::ReadyQueue> const&, bool) from ??:0 [rank4]:#26 torch::autograd::python::PythonEngine::thread_init(int, std::shared_ptr<torch::autograd::ReadyQueue> const&, bool) from :0 [rank4]:#27 std::error_code::default_error_condition() const from ??:0 [rank4]:#28 start_thread from ??:0 [rank4]:#29 __clone3 from :0 [rank4]: [rank4]: [rank4]:The above exception was the direct cause of the following exception: [rank4]: [rank4]:Traceback (most recent call last): [rank4]: File "/home/whc/.conda/envs/pytorch-3.10/lib/python3.10/threading.py", line 1016, in _bootstrap_inner [rank4]: self.run() [rank4]: File "/home/whc/.conda/envs/pytorch-3.10/lib/python3.10/threading.py", line 953, in run [rank4]: self._target(*self._args, **self._kwargs) [rank4]: File "/data/users/whc/torchtitan/torchtitan/distributed/dual_pipe_v.py", line 254, in run_backward [rank4]: backward_stage.backward_one_chunk( [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/stage.py", line 799, in backward_one_chunk [rank4]: grads_input, _ = self.backward_maybe_with_nosync( [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/stage.py", line 653, in backward_maybe_with_nosync [rank4]: result = perform_backward(backward_type)() [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/stage.py", line 607, in <lambda> [rank4]: stage_backward( [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/_backward.py", line 425, in stage_backward [rank4]: raise RuntimeError(exc_msg) from e [rank4]:RuntimeError: [rank4]: Failed to run stage backward: [rank4]: Stage output: ('Tensor(torch.Size([1, 4096, 2048]), grad=True, dtype=torch.bfloat16)',) [rank4]: Output gradient: ('Tensor(torch.Size([1, 4096, 2048]), grad=False, dtype=torch.bfloat16)',) [rank4]: Input: ['Tensor(torch.Size([1, 4096, 2048]), grad=True, dtype=torch.bfloat16)'] ```
H-Huang
pushed a commit
to H-Huang/torchtitan
that referenced
this pull request
Dec 2, 2025
recomputing MoE during backward ``` [rank4]: (Triggered internally at /data/users/whc/pytorch/torch/csrc/autograd/python_anomaly_mode.cpp:122.) [rank4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [rank4]:Exception in thread Thread-2 (run_backward): [rank4]:Traceback (most recent call last): [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/_backward.py", line 384, in stage_backward [rank4]: torch.autograd.backward( [rank4]: File "/data/users/whc/pytorch/torch/autograd/__init__.py", line 364, in backward [rank4]: _engine_run_backward( [rank4]: File "/data/users/whc/pytorch/torch/autograd/graph.py", line 865, in _engine_run_backward [rank4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [rank4]:RuntimeError: NCCL Error 5: invalid usage (run with NCCL_DEBUG=WARN for details) [rank4]:Exception raised from throw_nccl_error at /data/users/whc/pytorch/torch/csrc/cuda/nccl.cpp:259 (most recent call first): [rank4]:C++ CapturedTraceback: [rank4]:pytorch#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function< std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()pytorch#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0 [rank4]:pytorch#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0 [rank4]:pytorch#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from ??:0 [rank4]:pytorch#7 torch::cuda::nccl::detail::throw_nccl_error(torch::cuda::nccl::ncclResult) from ??:0 [rank4]:pytorch#8 torch::cuda::nccl::detail::NCCL_CHECK_TIMEOUT(torch::cuda::nccl::ncclResult, void*) from nccl.cpp:0 [rank4]:pytorch#9 torch::cuda::nccl::all2all_single_unequal_split(void*, unsigned long const*, unsigned long const*, void*, unsigned long const*, unsigned long const*, unsigned long, c10::ScalarType, void* , c10::cuda::CUDAStream&) from ??:0 [rank4]:pytorch#10 c10d::ProcessGroupNCCL::alltoall_base(at::Tensor&, at::Tensor&, std::vector<long, std::allocator<long> >&, std::vector<long, std::allocator<long> >&, c10d::AllToAllOptions const&) from ? ?:0 [rank4]:pytorch#11 c10d::ops::(anonymous namespace)::alltoall_base_CUDA(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> >, bool, long) from Ops.cpp:0 [rank4]:pytorch#12 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (*)(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vec tor<long, std::allocator<long> >, bool, long), c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10::guts::typelist::typelist<at::Tensor&, at::Tensor&, c 10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> > , bool, long> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from :0 [rank4]:pytorch#13 void c10::BoxedKernel::make_boxed_function<&torch::autograd::basicAutogradNotImplementedFallbackImpl>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c 10::IValue, std::allocator<c10::IValue> >*) from autograd_not_implemented_fallback.cpp:0 [rank4]:pytorch#14 c10::impl::BoxedKernelWrapper<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGrou p, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> >, bool, long), void>::call(c10::Box edKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, std::vector<long, std::allocator<long> >, std::vector<long, std::allocator<long> >, bool, long) from :0 [rank4]:pytorch#15 c10d::ProcessGroup::alltoall_base(at::Tensor&, at::Tensor&, std::vector<long, std::allocator<long> >&, std::vector<long, std::allocator<long> >&, c10d::AllToAllOptions const&) from :0 [rank4]:pytorch#16 c10d::all_to_all_single(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ? ?:0 [rank4]:pytorch#17 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<at::Tensor (*)(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, st d::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >), at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, s td::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std:: allocator<c10::IValue> >*) from :0 [rank4]:pytorch#18 void c10::BoxedKernel::make_boxed_function<&torch::autograd::basicAutogradNotImplementedFallbackImpl>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c 10::IValue, std::allocator<c10::IValue> >*) from autograd_not_implemented_fallback.cpp:0 [rank4]:pytorch#19 c10::impl::BoxedKernelWrapper<at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocat or<char> >), void>::call(c10::BoxedKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__cxx11::basic_stri ng<char, std::char_traits<char>, std::allocator<char> >) from :0 [rank4]:pytorch#20 std::vector<at::Tensor, std::allocator<at::Tensor> > torch::autograd::CppNode_apply_functional<(anonymous namespace)::AllToAllSingle>(std::vector<at::Tensor, std::allocator<at::Tensor> > &&, torch::autograd::AutogradContext&, std::vector<bool, std::allocator<bool> > const&, std::vector<torch::autograd::VariableInfo, std::allocator<torch::autograd::VariableInfo> > const&, std::__cxx1 1::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from Functional.cpp:0 [rank4]:pytorch#21 torch::autograd::CppNode<(anonymous namespace)::AllToAllSingle>::apply(std::vector<at::Tensor, std::allocator<at::Tensor> >&&) from Functional.cpp:0 [rank4]:pytorch#22 torch::autograd::Node::operator()(std::vector<at::Tensor, std::allocator<at::Tensor> >&&) from :0 [rank4]:pytorch#23 torch::autograd::Engine::evaluate_function(std::shared_ptr<torch::autograd::GraphTask>&, torch::autograd::Node*, torch::autograd::InputBuffer&, std::shared_ptr<torch::autograd::ReadyQueu e> const&) from ??:0 [rank4]:pytorch#24 torch::autograd::Engine::thread_main(std::shared_ptr<torch::autograd::GraphTask> const&) from ??:0 [rank4]:pytorch#25 torch::autograd::Engine::thread_init(int, std::shared_ptr<torch::autograd::ReadyQueue> const&, bool) from ??:0 [rank4]:pytorch#26 torch::autograd::python::PythonEngine::thread_init(int, std::shared_ptr<torch::autograd::ReadyQueue> const&, bool) from :0 [rank4]:pytorch#27 std::error_code::default_error_condition() const from ??:0 [rank4]:pytorch#28 start_thread from ??:0 [rank4]:pytorch#29 __clone3 from :0 [rank4]: [rank4]: [rank4]:The above exception was the direct cause of the following exception: [rank4]: [rank4]:Traceback (most recent call last): [rank4]: File "/home/whc/.conda/envs/pytorch-3.10/lib/python3.10/threading.py", line 1016, in _bootstrap_inner [rank4]: self.run() [rank4]: File "/home/whc/.conda/envs/pytorch-3.10/lib/python3.10/threading.py", line 953, in run [rank4]: self._target(*self._args, **self._kwargs) [rank4]: File "/data/users/whc/torchtitan/torchtitan/distributed/dual_pipe_v.py", line 254, in run_backward [rank4]: backward_stage.backward_one_chunk( [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/stage.py", line 799, in backward_one_chunk [rank4]: grads_input, _ = self.backward_maybe_with_nosync( [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/stage.py", line 653, in backward_maybe_with_nosync [rank4]: result = perform_backward(backward_type)() [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/stage.py", line 607, in <lambda> [rank4]: stage_backward( [rank4]: File "/data/users/whc/pytorch/torch/distributed/pipelining/_backward.py", line 425, in stage_backward [rank4]: raise RuntimeError(exc_msg) from e [rank4]:RuntimeError: [rank4]: Failed to run stage backward: [rank4]: Stage output: ('Tensor(torch.Size([1, 4096, 2048]), grad=True, dtype=torch.bfloat16)',) [rank4]: Output gradient: ('Tensor(torch.Size([1, 4096, 2048]), grad=False, dtype=torch.bfloat16)',) [rank4]: Input: ['Tensor(torch.Size([1, 4096, 2048]), grad=True, dtype=torch.bfloat16)'] ```
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
got distracted with merge conflicts and had renamed config folder to 'train_configs', but did not update the default loading path.
This quick PR fixes that to ensure no break on running.