Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 51 additions & 79 deletions tests/ignite/metrics/test_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from sklearn.metrics import precision_score

import ignite.distributed as idist
from ignite.engine import Engine
from ignite.exceptions import NotComputableError
from ignite.metrics import Precision

Expand Down Expand Up @@ -419,25 +420,29 @@ def test_incorrect_y_classes(average):

@pytest.mark.usefixtures("distributed")
class TestDistributed:
def test_integration_multiclass(self):
from ignite.engine import Engine

@pytest.mark.parametrize("average", [False, "macro", "weighted", "micro"])
@pytest.mark.parametrize("n_epochs", [1, 2])
def test_integration_multiclass(self, average, n_epochs):
rank = idist.get_rank()
torch.manual_seed(12)
torch.manual_seed(12 + rank)

n_iters = 60
batch_size = 16
n_classes = 7

def _test(average, n_epochs, metric_device):
n_iters = 60
s = 16
n_classes = 7
metric_devices = [torch.device("cpu")]
device = idist.device()
if device.type != "xla":
metric_devices.append(idist.device())

offset = n_iters * s
y_true = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(offset * idist.get_world_size(), n_classes).to(device)
for metric_device in metric_devices:
y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(n_iters * batch_size, n_classes).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset, :],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size, :],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -449,6 +454,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "pr" in engine.state.metrics
assert pr._updated is True
res = engine.state.metrics["pr"]
Expand All @@ -464,40 +472,29 @@ def update(engine, i):

assert pytest.approx(res) == true_res

metric_devices = [torch.device("cpu")]
@pytest.mark.parametrize("average", [False, "macro", "weighted", "micro", "samples"])
@pytest.mark.parametrize("n_epochs", [1, 2])
def test_integration_multilabel(self, average, n_epochs):
rank = idist.get_rank()
torch.manual_seed(12 + rank)

n_iters = 60
batch_size = 16
n_classes = 7

metric_devices = ["cpu"]
device = idist.device()
if device.type != "xla":
metric_devices.append(idist.device())
for _ in range(2):
for metric_device in metric_devices:
_test(average=False, n_epochs=1, metric_device=metric_device)
_test(average=False, n_epochs=2, metric_device=metric_device)
_test(average="macro", n_epochs=1, metric_device=metric_device)
_test(average="macro", n_epochs=2, metric_device=metric_device)
_test(average="weighted", n_epochs=1, metric_device=metric_device)
_test(average="weighted", n_epochs=2, metric_device=metric_device)
_test(average="micro", n_epochs=1, metric_device=metric_device)
_test(average="micro", n_epochs=2, metric_device=metric_device)

def test_integration_multilabel(self):
from ignite.engine import Engine

rank = idist.get_rank()
torch.manual_seed(12)

def _test(average, n_epochs, metric_device):
n_iters = 60
s = 16
n_classes = 7

offset = n_iters * s
y_true = torch.randint(0, 2, size=(offset * idist.get_world_size(), n_classes, 6, 8)).to(device)
y_preds = torch.randint(0, 2, size=(offset * idist.get_world_size(), n_classes, 6, 8)).to(device)
for metric_device in metric_devices:
y_true = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device)
y_preds = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset, ...],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset, ...],
y_preds[i * batch_size : (i + 1) * batch_size, ...],
y_true[i * batch_size : (i + 1) * batch_size, ...],
)

engine = Engine(update)
Expand All @@ -509,6 +506,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "pr" in engine.state.metrics
assert pr._updated is True
res = engine.state.metrics["pr"]
Expand All @@ -528,27 +528,16 @@ def update(engine, i):
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert precision_score(np_y_true, np_y_preds, average=sk_average_parameter) == pytest.approx(res)

metric_devices = ["cpu"]
@pytest.mark.parametrize("average", [False, "macro", "weighted", "micro"])
def test_accumulator_device(self, average):
# Binary accuracy on input of shape (N, 1) or (N, )

metric_devices = [torch.device("cpu")]
device = idist.device()
if device.type != "xla":
metric_devices.append(idist.device())
for _ in range(2):
for metric_device in metric_devices:
_test(average=False, n_epochs=1, metric_device=metric_device)
_test(average=False, n_epochs=2, metric_device=metric_device)
_test(average="macro", n_epochs=1, metric_device=metric_device)
_test(average="macro", n_epochs=2, metric_device=metric_device)
_test(average="micro", n_epochs=1, metric_device=metric_device)
_test(average="micro", n_epochs=2, metric_device=metric_device)
_test(average="weighted", n_epochs=1, metric_device=metric_device)
_test(average="weighted", n_epochs=2, metric_device=metric_device)
_test(average="samples", n_epochs=1, metric_device=metric_device)
_test(average="samples", n_epochs=2, metric_device=metric_device)

def test_accumulator_device(self):
# Binary accuracy on input of shape (N, 1) or (N, )

def _test(average, metric_device):
for metric_device in metric_devices:
pr = Precision(average=average, device=metric_device)
assert pr._device == metric_device
assert pr._updated is False
Expand All @@ -575,24 +564,18 @@ def _test(average, metric_device):
assert pr._weight.device == metric_device, f"{type(pr._weight.device)}:{pr._weight.device} vs "
f"{type(metric_device)}:{metric_device}"

@pytest.mark.parametrize("average", [False, "macro", "weighted", "micro", "samples"])
def test_multilabel_accumulator_device(self, average):
# Multiclass input data of shape (N, ) and (N, C)

metric_devices = [torch.device("cpu")]
device = idist.device()
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
_test(False, metric_device=metric_device)
_test("macro", metric_device=metric_device)
_test("micro", metric_device=metric_device)
_test("weighted", metric_device=metric_device)

def test_multilabel_accumulator_device(self):
# Multiclass input data of shape (N, ) and (N, C)

def _test(average, metric_device):
pr = Precision(is_multilabel=True, average=average, device=metric_device)

assert pr._updated is False
assert pr._device == metric_device
assert pr._updated is False

y_pred = torch.randint(0, 2, size=(10, 4, 20, 23))
y = torch.randint(0, 2, size=(10, 4, 20, 23)).long()
Expand All @@ -613,14 +596,3 @@ def _test(average, metric_device):
if average == "weighted":
assert pr._weight.device == metric_device, f"{type(pr._weight.device)}:{pr._weight.device} vs "
f"{type(metric_device)}:{metric_device}"

metric_devices = [torch.device("cpu")]
device = idist.device()
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
_test(False, metric_device=metric_device)
_test("macro", metric_device=metric_device)
_test("micro", metric_device=metric_device)
_test("weighted", metric_device=metric_device)
_test("samples", metric_device=metric_device)
Loading