Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 19 additions & 13 deletions tests/ignite/metrics/test_mean_pairwise_distance.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,22 +56,22 @@ def _test_distrib_integration(device):
from ignite.engine import Engine

rank = idist.get_rank()
torch.manual_seed(12)
torch.manual_seed(12 + rank)

n_iters = 100
s = 50
offset = n_iters * s
def _test(metric_device):

y_true = torch.rand(offset * idist.get_world_size(), 10).to(device)
y_preds = torch.rand(offset * idist.get_world_size(), 10).to(device)
n_iters = 100
batch_size = 50

def update(engine, i):
return (
y_preds[i * s + offset * rank : (i + 1) * s + offset * rank, ...],
y_true[i * s + offset * rank : (i + 1) * s + offset * rank, ...],
)
y_true = torch.rand(n_iters * batch_size, 10).to(device)
y_preds = torch.rand(n_iters * batch_size, 10).to(device)

def update(engine, i):
return (
y_preds[i * batch_size : (i + 1) * batch_size, ...],
y_true[i * batch_size : (i + 1) * batch_size, ...],
)

def _test(metric_device):
engine = Engine(update)

m = MeanPairwiseDistance(device=metric_device)
Expand All @@ -80,14 +80,20 @@ def _test(metric_device):
data = list(range(n_iters))
engine.run(data=data, max_epochs=1)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "mpwd" in engine.state.metrics
res = engine.state.metrics["mpwd"]

true_res = []
for i in range(n_iters * idist.get_world_size()):
true_res.append(
torch.pairwise_distance(
y_true[i * s : (i + 1) * s, ...], y_preds[i * s : (i + 1) * s, ...], p=m._p, eps=m._eps
y_true[i * batch_size : (i + 1) * batch_size, ...],
y_preds[i * batch_size : (i + 1) * batch_size, ...],
p=m._p,
eps=m._eps,
)
.cpu()
.numpy()
Expand Down
26 changes: 15 additions & 11 deletions tests/ignite/metrics/test_mean_squared_error.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,20 +58,21 @@ def _test_distrib_integration(device, tol=1e-6):
from ignite.engine import Engine

rank = idist.get_rank()
n_iters = 100
s = 10
offset = n_iters * s
torch.manual_seed(12 + rank)

y_true = torch.arange(0, offset * idist.get_world_size(), dtype=torch.float).to(device)
y_preds = torch.ones(offset * idist.get_world_size(), dtype=torch.float).to(device)
def _test(metric_device):
n_iters = 100
batch_size = 10

def update(engine, i):
return (
y_preds[i * s + offset * rank : (i + 1) * s + offset * rank],
y_true[i * s + offset * rank : (i + 1) * s + offset * rank],
)
y_true = torch.arange(0, n_iters * batch_size, dtype=torch.float).to(device)
y_preds = torch.ones(n_iters * batch_size, dtype=torch.float).to(device)

def update(engine, i):
return (
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

def _test(metric_device):
engine = Engine(update)

m = MeanSquaredError(device=metric_device)
Expand All @@ -80,6 +81,9 @@ def _test(metric_device):
data = list(range(n_iters))
engine.run(data=data, max_epochs=1)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "mse" in engine.state.metrics
res = engine.state.metrics["mse"]

Expand Down
34 changes: 17 additions & 17 deletions tests/ignite/metrics/test_metrics_lambda.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,29 +437,25 @@ def compute_true_somemetric(y_pred, y):
def _test_distrib_integration(device):

rank = idist.get_rank()
np.random.seed(12)

n_iters = 10
batch_size = 10
n_classes = 10

def _test(metric_device):
y_true = np.arange(0, n_iters * batch_size * idist.get_world_size(), dtype="int64") % n_classes
y_pred = 0.2 * np.random.rand(n_iters * batch_size * idist.get_world_size(), n_classes)
for i in range(n_iters * batch_size * idist.get_world_size()):
y_true = torch.arange(0, n_iters * batch_size, dtype=torch.int64).to(device) % n_classes
y_pred = 0.2 * torch.rand(n_iters * batch_size, n_classes).to(device)
for i in range(n_iters * batch_size):
if np.random.rand() > 0.4:
y_pred[i, y_true[i]] = 1.0
else:
j = np.random.randint(0, n_classes)
y_pred[i, j] = 0.7

y_true = y_true.reshape(n_iters * idist.get_world_size(), batch_size)
y_pred = y_pred.reshape(n_iters * idist.get_world_size(), batch_size, n_classes)

def update_fn(engine, i):
y_true_batch = y_true[i + rank * n_iters, ...]
y_pred_batch = y_pred[i + rank * n_iters, ...]
return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)
y_true_batch = y_true[i * batch_size : (i + 1) * batch_size, ...]
y_pred_batch = y_pred[i * batch_size : (i + 1) * batch_size, ...]
return y_pred_batch, y_true_batch

evaluator = Engine(update_fn)

Expand All @@ -478,13 +474,17 @@ def Fbeta(r, p, beta):
data = list(range(n_iters))
state = evaluator.run(data, max_epochs=1)

y_pred = idist.all_gather(y_pred)
y_true = idist.all_gather(y_true)

assert "f1" in state.metrics
assert "ff1" in state.metrics
f1_true = f1_score(y_true.ravel(), np.argmax(y_pred.reshape(-1, n_classes), axis=-1), average="macro")
assert f1_true == approx(state.metrics["f1"])
assert 1.0 + f1_true == approx(state.metrics["ff1"])

for _ in range(3):
for i in range(3):
torch.manual_seed(12 + rank + i)
_test("cpu")
if device.type != "xla":
_test(idist.device())
Expand All @@ -493,17 +493,17 @@ def Fbeta(r, p, beta):
def _test_distrib_metrics_on_diff_devices(device):
n_classes = 10
n_iters = 12
s = 16
offset = n_iters * s
batch_size = 16
rank = idist.get_rank()
torch.manual_seed(12 + rank)

y_true = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(offset * idist.get_world_size(), n_classes).to(device)
y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(n_iters * batch_size, n_classes).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

precision = Precision(average=False, device="cpu")
Expand Down