Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 12 additions & 11 deletions tests/ignite/contrib/metrics/regression/test_fractional_bias.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,6 @@ def _test_distrib_compute(device, tol=1e-5):
def _test(metric_device):
metric_device = torch.device(metric_device)
m = FractionalBias(device=metric_device)
torch.manual_seed(10 + rank)

y_pred = torch.randint(0, 10, size=(10,), device=device).float()
y = torch.randint(0, 10, size=(10,), device=device).float()
Expand All @@ -135,7 +134,8 @@ def _test(metric_device):

assert np_ans == pytest.approx(res, rel=tol)

for _ in range(3):
for i in range(3):
torch.manual_seed(10 + rank + i)
_test("cpu")
if device.type != "xla":
_test(idist.device())
Expand All @@ -144,22 +144,19 @@ def _test(metric_device):
def _test_distrib_integration(device, tol=1e-5):

rank = idist.get_rank()
torch.manual_seed(12)

def _test(n_epochs, metric_device):
metric_device = torch.device(metric_device)
n_iters = 80
s = 16
n_classes = 2
batch_size = 16

offset = n_iters * s
y_true = torch.rand(size=(offset * idist.get_world_size(),), dtype=torch.double).to(device)
y_preds = torch.rand(size=(offset * idist.get_world_size(),), dtype=torch.double).to(device)
y_true = torch.rand(size=(n_iters * batch_size,), dtype=torch.double).to(device)
y_preds = torch.rand(size=(n_iters * batch_size,), dtype=torch.double).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -170,6 +167,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "fb" in engine.state.metrics

res = engine.state.metrics["fb"]
Expand All @@ -189,7 +189,8 @@ def update(engine, i):
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
for _ in range(2):
for i in range(2):
torch.manual_seed(12 + rank + i)
_test(n_epochs=1, metric_device=metric_device)
_test(n_epochs=2, metric_device=metric_device)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -99,8 +99,9 @@ def get_test_cases():
]
return test_cases

for _ in range(5):
for i in range(5):
# check multiple random inputs as random exact occurencies are rare
torch.manual_seed(12 + i)
test_cases = get_test_cases()
for y_pred, y, batch_size in test_cases:
_test(y_pred, y, batch_size)
Expand Down Expand Up @@ -143,22 +144,19 @@ def _test(metric_device):
def _test_distrib_integration(device):

rank = idist.get_rank()
torch.manual_seed(12)

def _test(n_epochs, metric_device):
metric_device = torch.device(metric_device)
n_iters = 80
s = 16
n_classes = 2
batch_size = 16

offset = n_iters * s
y_true = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_true = torch.rand(size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(size=(n_iters * batch_size,)).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -169,6 +167,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "gmae" in engine.state.metrics

res = engine.state.metrics["gmae"]
Expand All @@ -186,7 +187,8 @@ def update(engine, i):
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
for _ in range(2):
for i in range(2):
torch.manual_seed(11 + rank + i)
_test(n_epochs=1, metric_device=metric_device)
_test(n_epochs=2, metric_device=metric_device)

Expand Down