Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 12 additions & 11 deletions tests/ignite/contrib/metrics/regression/test_canberra_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,6 @@ def _test_distrib_compute(device):
def _test(metric_device):
metric_device = torch.device(metric_device)
m = CanberraMetric(device=metric_device)
torch.manual_seed(10 + rank)

y_pred = torch.randint(0, 10, size=(10,), device=device).float()
y = torch.randint(0, 10, size=(10,), device=device).float()
Expand All @@ -125,7 +124,8 @@ def _test(metric_device):
res = m.compute()
assert canberra.pairwise([np_y_pred, np_y])[0][1] == pytest.approx(res)

for _ in range(3):
for i in range(3):
torch.manual_seed(10 + rank + i)
_test("cpu")
if device.type != "xla":
_test(idist.device())
Expand All @@ -134,23 +134,20 @@ def _test(metric_device):
def _test_distrib_integration(device):

rank = idist.get_rank()
torch.manual_seed(12)
canberra = DistanceMetric.get_metric("canberra")

def _test(n_epochs, metric_device):
metric_device = torch.device(metric_device)
n_iters = 80
s = 16
n_classes = 2
batch_size = 16

offset = n_iters * s
y_true = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_true = torch.rand(size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(size=(n_iters * batch_size,)).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -161,6 +158,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "cm" in engine.state.metrics

res = engine.state.metrics["cm"]
Expand All @@ -176,7 +176,8 @@ def update(engine, i):
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
for _ in range(2):
for i in range(2):
torch.manual_seed(12 + rank + i)
_test(n_epochs=1, metric_device=metric_device)
_test(n_epochs=2, metric_device=metric_device)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -104,12 +104,10 @@ def get_test_cases():
def _test_distrib_compute(device):

rank = idist.get_rank()
torch.manual_seed(12)

def _test(metric_device):
metric_device = torch.device(metric_device)
m = FractionalAbsoluteError(device=metric_device)
torch.manual_seed(10 + rank)

y_pred = torch.rand(size=(100,), device=device)
y = torch.rand(size=(100,), device=device)
Expand All @@ -129,7 +127,8 @@ def _test(metric_device):

assert m.compute() == pytest.approx(np_ans)

for _ in range(3):
for i in range(3):
torch.manual_seed(10 + rank + i)
_test("cpu")
if device.type != "xla":
_test(idist.device())
Expand All @@ -138,22 +137,19 @@ def _test(metric_device):
def _test_distrib_integration(device):

rank = idist.get_rank()
torch.manual_seed(12)

def _test(n_epochs, metric_device):
metric_device = torch.device(metric_device)
n_iters = 80
s = 16
n_classes = 2
batch_size = 16

offset = n_iters * s
y_true = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_true = torch.rand(size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(size=(n_iters * batch_size,)).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -164,6 +160,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "fae" in engine.state.metrics

res = engine.state.metrics["fae"]
Expand All @@ -183,7 +182,8 @@ def update(engine, i):
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
for _ in range(2):
for i in range(2):
torch.manual_seed(12 + rank + i)
_test(n_epochs=1, metric_device=metric_device)
_test(n_epochs=2, metric_device=metric_device)

Expand Down