Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions ignite/metrics/ssim.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,8 +98,7 @@ def __init__(

@reinit__is_reduced
def reset(self) -> None:
# Not a tensor because batch size is not known in advance.
self._sum_of_batchwise_ssim = 0.0 # type: Union[float, torch.Tensor]
self._sum_of_ssim = torch.tensor(0.0, device=self._device)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should be float64

self._num_examples = 0
self._kernel = self._gaussian_or_uniform_kernel(kernel_size=self.kernel_size, sigma=self.sigma)

Expand Down Expand Up @@ -176,11 +175,12 @@ def update(self, output: Sequence[torch.Tensor]) -> None:
b2 = sigma_pred_sq + sigma_target_sq + self.c2

ssim_idx = (a1 * a2) / (b1 * b2)
self._sum_of_batchwise_ssim += torch.mean(ssim_idx, (1, 2, 3), dtype=torch.float64).to(self._device)
self._sum_of_ssim += torch.mean(ssim_idx, (1, 2, 3), dtype=torch.float64).sum().to(self._device)

self._num_examples += y.shape[0]

@sync_all_reduce("_sum_of_batchwise_ssim", "_num_examples")
@sync_all_reduce("_sum_of_ssim", "_num_examples")
def compute(self) -> torch.Tensor:
Copy link
Collaborator

@vfdev-5 vfdev-5 May 4, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's return just python float instead of a tensor ?

if self._num_examples == 0:
raise NotComputableError("SSIM must have at least one example before it can be computed.")
return torch.sum(self._sum_of_batchwise_ssim / self._num_examples) # type: ignore[arg-type]
return self._sum_of_ssim / self._num_examples
58 changes: 39 additions & 19 deletions tests/ignite/metrics/test_ssim.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,17 @@ def test_invalid_ssim():
ssim.compute()


def _test_ssim(y_pred, y, data_range, kernel_size, sigma, gaussian, use_sample_covariance, device):
atol = 7e-5
@pytest.mark.parametrize("device", ["cpu"] + ["cuda"] if torch.cuda.is_available() else [])
@pytest.mark.parametrize(
"shape, kernel_size, gaussian, use_sample_covariance",
[[(8, 3, 224, 224), 7, False, True], [(12, 3, 28, 28), 11, True, False]],
)
def test_ssim(device, shape, kernel_size, gaussian, use_sample_covariance):
y_pred = torch.rand(shape, device=device)
y = y_pred * 0.8

sigma = 1.5
data_range = 1.0
ssim = SSIM(data_range=data_range, sigma=sigma, device=device)
ssim.update((y_pred, y))
ignite_ssim = ssim.compute()
Expand All @@ -89,23 +98,34 @@ def _test_ssim(y_pred, y, data_range, kernel_size, sigma, gaussian, use_sample_c

assert isinstance(ignite_ssim, torch.Tensor)
assert ignite_ssim.dtype == torch.float64
assert ignite_ssim.device == torch.device(device)
assert np.allclose(ignite_ssim.cpu().numpy(), skimg_ssim, atol=atol)


def test_ssim():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
y_pred = torch.rand(8, 3, 224, 224, device=device)
y = y_pred * 0.8
_test_ssim(
y_pred, y, data_range=1.0, kernel_size=7, sigma=1.5, gaussian=False, use_sample_covariance=True, device=device
)
assert ignite_ssim.device.type == torch.device(device).type
assert np.allclose(ignite_ssim.cpu().numpy(), skimg_ssim, atol=7e-5)
Comment on lines 99 to +102
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As we can return float instead of Tensor, let's update tests



def test_ssim_variable_batchsize():
# Checks https://github.com/pytorch/ignite/issues/2532
sigma = 1.5
data_range = 1.0
ssim = SSIM(data_range=data_range, sigma=sigma)

y_preds = [
torch.rand(12, 3, 28, 28),
torch.rand(12, 3, 28, 28),
torch.rand(8, 3, 28, 28),
torch.rand(16, 3, 28, 28),
torch.rand(1, 3, 28, 28),
torch.rand(30, 3, 28, 28),
]
y_true = [v * 0.8 for v in y_preds]

for y_pred, y in zip(y_preds, y_true):
ssim.update((y_pred, y))

y_pred = torch.rand(12, 3, 28, 28, device=device)
y = y_pred * 0.8
_test_ssim(
y_pred, y, data_range=1.0, kernel_size=11, sigma=1.5, gaussian=True, use_sample_covariance=False, device=device
)
out = ssim.compute()
ssim.reset()
ssim.update((torch.cat(y_preds), torch.cat(y_true)))
expected = ssim.compute()
assert torch.allclose(out, expected)


def _test_distrib_integration(device, tol=1e-4):
Expand Down Expand Up @@ -186,7 +206,7 @@ def _test_distrib_accumulator_device(device):
y = y_pred * 0.65
ssim.update((y_pred, y))

dev = ssim._sum_of_batchwise_ssim.device
dev = ssim._sum_of_ssim.device
assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}"


Expand Down