Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 29 additions & 5 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -332,6 +332,8 @@ def run(self):

# doctest config
doctest_global_setup = """
from collections import OrderedDict

import torch
from torch import nn, optim

Expand All @@ -340,18 +342,40 @@ def run(self):
from ignite.metrics import *
from ignite.utils import *
from ignite.contrib.metrics.regression import *

from ignite.contrib.metrics import *

manual_seed(666)

# create default evaluator for doctests

def process_function(engine, batch):
def eval_step(engine, batch):
y_pred, y = batch
return y_pred, y

default_evaluator = Engine(process_function)
default_evaluator = Engine(eval_step)

# create default optimizer for doctests

param_tensor = torch.zeros([1], requires_grad=True)
default_optimizer = torch.optim.SGD([param_tensor], lr=0)

# create default trainer for doctests
# as handlers could be attached to the trainer,
# each test must defined his own trainer using `.. testsetup:`

def get_default_trainer():

def train_step(engine, batch):
return 0.0

return Engine(train_step)

# create default model for doctests

default_model = nn.Sequential(OrderedDict([
('base', nn.Linear(4, 2)),
('fc', nn.Linear(2, 1))
]))

manual_seed(666)
"""


Expand Down
68 changes: 62 additions & 6 deletions ignite/handlers/param_scheduler.py
Original file line number Diff line number Diff line change
Expand Up @@ -360,15 +360,71 @@ class LinearCyclicalScheduler(CyclicalScheduler):
usually be the number of batches in an epoch.

Examples:
.. code-block:: python

.. testsetup:: *

default_trainer = get_default_trainer()

.. testcode:: 1

from ignite.handlers.param_scheduler import LinearCyclicalScheduler

scheduler = LinearCyclicalScheduler(optimizer, 'lr', 1e-3, 1e-1, len(train_loader))
trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)
#
# Linearly increases the learning rate from 1e-3 to 1e-1 and back to 1e-3
# over the course of 1 epoch
# Linearly increases the learning rate from 0.0 to 1.0 and back to 0.0
# over a cycle of 4 iterations
scheduler = LinearCyclicalScheduler(default_optimizer, "lr", 0.0, 1.0, 4)

default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

@default_trainer.on(Events.ITERATION_COMPLETED)
def print_lr():
print(default_optimizer.param_groups[0]["lr"])

default_trainer.run([0] * 9, max_epochs=1)

.. testoutput:: 1

0.0
0.5
1.0
0.5
...

.. testcode:: 2

from ignite.handlers.param_scheduler import LinearCyclicalScheduler

optimizer = torch.optim.SGD(
[
{"params": default_model.base.parameters(), "lr": 0.001},
{"params": default_model.fc.parameters(), "lr": 0.01},
]
)

# Linearly increases the learning rate from 0.0 to 1.0 and back to 0.0
# over a cycle of 4 iterations
scheduler1 = LinearCyclicalScheduler(optimizer, "lr", 0.0, 1.0, 4, param_group_index=0)

# Linearly increases the learning rate from 1.0 to 0.0 and back to 0.1
# over a cycle of 4 iterations
scheduler2 = LinearCyclicalScheduler(optimizer, "lr", 0.0, 0.1, 4, param_group_index=1)

default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler1)
default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler2)

@default_trainer.on(Events.ITERATION_COMPLETED)
def print_lr():
print(optimizer.param_groups[0]["lr"],
optimizer.param_groups[1]["lr"])

default_trainer.run([0] * 9, max_epochs=1)

.. testoutput:: 2

0.0 0.0
0.5 0.05
1.0 0.1
0.5 0.05
...

.. versionadded:: 0.4.5
"""
Expand Down