Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
189 changes: 1 addition & 188 deletions xarray/core/dtypes.py
Original file line number Diff line number Diff line change
@@ -1,188 +1 @@
from __future__ import annotations

import functools

import numpy as np

from xarray.core import utils

# Use as a sentinel value to indicate a dtype appropriate NA value.
NA = utils.ReprObject("<NA>")


@functools.total_ordering
class AlwaysGreaterThan:
def __gt__(self, other):
return True

def __eq__(self, other):
return isinstance(other, type(self))


@functools.total_ordering
class AlwaysLessThan:
def __lt__(self, other):
return True

def __eq__(self, other):
return isinstance(other, type(self))


# Equivalence to np.inf (-np.inf) for object-type
INF = AlwaysGreaterThan()
NINF = AlwaysLessThan()


# Pairs of types that, if both found, should be promoted to object dtype
# instead of following NumPy's own type-promotion rules. These type promotion
# rules match pandas instead. For reference, see the NumPy type hierarchy:
# https://numpy.org/doc/stable/reference/arrays.scalars.html
PROMOTE_TO_OBJECT: tuple[tuple[type[np.generic], type[np.generic]], ...] = (
(np.number, np.character), # numpy promotes to character
(np.bool_, np.character), # numpy promotes to character
(np.bytes_, np.str_), # numpy promotes to unicode
)


def maybe_promote(dtype):
"""Simpler equivalent of pandas.core.common._maybe_promote
Parameters
----------
dtype : np.dtype
Returns
-------
dtype : Promoted dtype that can hold missing values.
fill_value : Valid missing value for the promoted dtype.
"""
# N.B. these casting rules should match pandas
if np.issubdtype(dtype, np.floating):
fill_value = np.nan
elif np.issubdtype(dtype, np.timedelta64):
# See https://github.com/numpy/numpy/issues/10685
# np.timedelta64 is a subclass of np.integer
# Check np.timedelta64 before np.integer
fill_value = np.timedelta64("NaT")
elif np.issubdtype(dtype, np.integer):
dtype = np.float32 if dtype.itemsize <= 2 else np.float64
fill_value = np.nan
elif np.issubdtype(dtype, np.complexfloating):
fill_value = np.nan + np.nan * 1j
elif np.issubdtype(dtype, np.datetime64):
fill_value = np.datetime64("NaT")
else:
dtype = object
fill_value = np.nan

dtype = np.dtype(dtype)
fill_value = dtype.type(fill_value)
return dtype, fill_value


NAT_TYPES = {np.datetime64("NaT").dtype, np.timedelta64("NaT").dtype}


def get_fill_value(dtype):
"""Return an appropriate fill value for this dtype.
Parameters
----------
dtype : np.dtype
Returns
-------
fill_value : Missing value corresponding to this dtype.
"""
_, fill_value = maybe_promote(dtype)
return fill_value


def get_pos_infinity(dtype, max_for_int=False):
"""Return an appropriate positive infinity for this dtype.
Parameters
----------
dtype : np.dtype
max_for_int : bool
Return np.iinfo(dtype).max instead of np.inf
Returns
-------
fill_value : positive infinity value corresponding to this dtype.
"""
if issubclass(dtype.type, np.floating):
return np.inf

if issubclass(dtype.type, np.integer):
if max_for_int:
return np.iinfo(dtype).max
else:
return np.inf

if issubclass(dtype.type, np.complexfloating):
return np.inf + 1j * np.inf

return INF


def get_neg_infinity(dtype, min_for_int=False):
"""Return an appropriate positive infinity for this dtype.
Parameters
----------
dtype : np.dtype
min_for_int : bool
Return np.iinfo(dtype).min instead of -np.inf
Returns
-------
fill_value : positive infinity value corresponding to this dtype.
"""
if issubclass(dtype.type, np.floating):
return -np.inf

if issubclass(dtype.type, np.integer):
if min_for_int:
return np.iinfo(dtype).min
else:
return -np.inf

if issubclass(dtype.type, np.complexfloating):
return -np.inf - 1j * np.inf

return NINF


def is_datetime_like(dtype):
"""Check if a dtype is a subclass of the numpy datetime types"""
return np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)


def result_type(
*arrays_and_dtypes: np.typing.ArrayLike | np.typing.DTypeLike,
) -> np.dtype:
"""Like np.result_type, but with type promotion rules matching pandas.
Examples of changed behavior:
number + string -> object (not string)
bytes + unicode -> object (not unicode)
Parameters
----------
*arrays_and_dtypes : list of arrays and dtypes
The dtype is extracted from both numpy and dask arrays.
Returns
-------
numpy.dtype for the result.
"""
types = {np.result_type(t).type for t in arrays_and_dtypes}

for left, right in PROMOTE_TO_OBJECT:
if any(issubclass(t, left) for t in types) and any(
issubclass(t, right) for t in types
):
return np.dtype(object)

return np.result_type(*arrays_and_dtypes)
from xarray.namedarray.dtypes import * # noqa: F401, F403
27 changes: 2 additions & 25 deletions xarray/core/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,8 @@
import numpy as np
import pandas as pd

from xarray.namedarray.utils import ReprObject # noqa: F401

if TYPE_CHECKING:
from xarray.core.types import Dims, ErrorOptionsWithWarn, OrderedDims, T_DuckArray

Expand Down Expand Up @@ -605,31 +607,6 @@ def __repr__(self: Any) -> str:
return f"{type(self).__name__}(array={self.array!r})"


class ReprObject:
"""Object that prints as the given value, for use with sentinel values."""

__slots__ = ("_value",)

def __init__(self, value: str):
self._value = value

def __repr__(self) -> str:
return self._value

def __eq__(self, other) -> bool:
if isinstance(other, ReprObject):
return self._value == other._value
return False

def __hash__(self) -> int:
return hash((type(self), self._value))

def __dask_tokenize__(self):
from dask.base import normalize_token

return normalize_token((type(self), self._value))


@contextlib.contextmanager
def close_on_error(f):
"""Context manager to ensure that a file opened by xarray is closed if an
Expand Down
Loading