-
Notifications
You must be signed in to change notification settings - Fork 121
Labels
documentationWe might describe something betterWe might describe something bettergood first issueGood for newcomersGood for newcomers
Description
As discussed in #586, although most of the library features are documented in the user guide, the best way to showcase how to access and use each class/function would be a minimal example usage in the docstrings. And this is currently covered only for a subset of the library features.
Here the list of all the remaining classes that would benefit from it:
-
preprocessing.outlier_remover.OutlierRemover(solved in Added example to docstring of outlier_remover #639 ) -
meta.outlier_classifier.OutlierClassifier(solved in Example forpreprocessing.dictmapper.DictMapperandmeta.outlier_classifier.OutlierClassifier#646) -
preprocessing.dictmapper.DictMapper(solved in Example forpreprocessing.dictmapper.DictMapperandmeta.outlier_classifier.OutlierClassifier#646) -
preprocessing.pandastransformers.PandasTypeSelector(solved in Docstrings API examples #648) -
preprocessing.projections.InformationFilter(solved in Docstrings API examples #648) -
preprocessing.repeatingbasis.RepeatingBasisFunction(solved in Docstrings API examples #648) -
preprocessing.formulaictransformer.FormulaicTransformer(solved in Docstrings API examples #648) -
preprocessing.identitytransformer.IdentityTransformer(solved in Docstrings API examples #648) -
linear_model.LowessRegression#650 -
linear_model.ProbWeightRegression(solved in first docstrings for linear model #691) -
linear_model.DeadZoneRegressor(solved in first docstrings for linear model #691) -
linear_model.DemographicParityClassifier(solved in first docstrings for linear model #691) -
linear_model.EqualOpportunityClassifier(solved in first docstrings for linear model #691) -
decomposition.pca_reconstruction.PCAOutlierDetection#652 -
decomposition.umap_reconstruction.UMAPOutlierDetection#653 -
mixture.bayesian_gmm_classifier.BayesianGMMClassifier -
mixture.bayesian_gmm_detector.BayesianGMMOutlierDetector -
mixture.gmm_classifier.GMMClassifier -
mixture.gmm_detector.GMMOutlierDetector -
model_selection.TimeGapSplit -
model_selection.GroupTimeSeriesSplit -
model_selection.KlusterFoldValidation -
naive_bayes.GaussianMixtureNB -
naive_bayes.BayesianGaussianMixtureNB -
neighbors.BayesianKernelDensityClassifier -
meta.confusion_balancer.ConfusionBalancer -
meta.estimator_transformer.EstimatorTransformer -
meta.grouped_predictor.GroupedPredictor -
meta.grouped_transformer.GroupedTransformer -
meta.regression_outlier_detector.RegressionOutlierDetector -
meta.subjective_classifier.SubjectiveClassifier -
meta.thresholder.Thresholder -
preprocessing.intervalencoder.IntervalEncoder
As an instance of such minimal example you can refer to QuantileRegression docstring section, which renders as in its API section.
If possible try to add one unique example covering the relevant features and methods in the top level docstring of the class.
Metadata
Metadata
Assignees
Labels
documentationWe might describe something betterWe might describe something bettergood first issueGood for newcomersGood for newcomers