-
Notifications
You must be signed in to change notification settings - Fork 0
Add unittests for Universal Assisted generation #8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 3 commits
4e92e9c
011f595
2652490
701edbb
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,96 @@ | ||
| import unittest | ||
|
|
||
| import torch | ||
| from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | ||
| from transformers.generation.candidate_generator import UniversalSpeculativeDecodingGenerator | ||
|
|
||
|
|
||
| device = "cuda" if torch.cuda.is_available() else "cpu" | ||
|
|
||
| class TestUniversalSpeculativeDecoding(unittest.TestCase): | ||
| @classmethod | ||
| def setUpClass(cls): | ||
| # Setup main and assistant models | ||
| cls.main_model = AutoModelForCausalLM.from_pretrained( | ||
|
||
| "meta-llama/Llama-3.2-1B-Instruct").to(device) | ||
| cls.assistant_model = AutoModelForCausalLM.from_pretrained( | ||
| "hf-internal-testing/tiny-random-gpt2").to(device) | ||
| cls.main_tokenizer = AutoTokenizer.from_pretrained( | ||
| "meta-llama/Llama-3.2-1B-Instruct") | ||
| cls.assistant_tokenizer = AutoTokenizer.from_pretrained( | ||
| "hf-internal-testing/tiny-random-gpt2") | ||
| cls.generation_config = GenerationConfig() | ||
|
|
||
| # Ensure required tokens exist | ||
| if cls.main_tokenizer.pad_token_id is None: | ||
| cls.main_tokenizer.pad_token_id = cls.main_tokenizer.eos_token_id | ||
| if cls.main_tokenizer.bos_token_id is None: | ||
| cls.main_tokenizer.bos_token_id = cls.main_tokenizer.eos_token_id | ||
|
|
||
| def setUp(self): | ||
| self.input_ids = torch.tensor([[1, 2, 3]]).to(device) | ||
| self.model_kwargs = { | ||
| "attention_mask": torch.ones_like(self.input_ids).to(device), | ||
| } | ||
| self.generator = UniversalSpeculativeDecodingGenerator( | ||
| input_ids=self.input_ids, | ||
| assistant_model=self.assistant_model, | ||
| target_tokenizer=self.main_tokenizer, | ||
| assistant_tokenizer=self.assistant_tokenizer, | ||
| generation_config=self.generation_config, | ||
| model_kwargs=self.model_kwargs, | ||
| target_vocab_size=self.main_tokenizer.vocab_size, | ||
| ) | ||
|
|
||
| def test_basic_generation(self): | ||
| """Test basic speculative decoding works""" | ||
| input_text = "The quick brown fox" | ||
| input_ids = self.main_tokenizer.encode(input_text, return_tensors="pt") | ||
| self.generator.input_ids = input_ids | ||
| candidates, scores = self.generator.get_candidates(input_ids) | ||
|
|
||
| self.assertIsNotNone(candidates) | ||
| self.assertIsNotNone(scores) | ||
| self.assertTrue(torch.is_tensor(candidates)) | ||
| self.assertTrue(torch.is_tensor(scores)) | ||
|
|
||
| def test_mismatched_vocabularies(self): | ||
| """Test handling of mismatched vocabularies between models""" | ||
| # Create input with tokens present in main but not assistant vocab | ||
| # Find a token that is not in the assistant tokenizer but in | ||
| # the main tokenizer. | ||
| missing_token = next( | ||
| token for token in self.main_tokenizer.get_vocab() | ||
| if token not in self.assistant_tokenizer.get_vocab() and | ||
| token not in self.main_tokenizer.all_special_tokens and | ||
| "reserved_" not in token | ||
| ) | ||
| input_ids = torch.tensor([[self.main_tokenizer.convert_tokens_to_ids(missing_token)]]) | ||
| self.generator.input_ids = input_ids | ||
| candidates, scores = self.generator.get_candidates(input_ids) | ||
| self.assertIsNotNone(candidates) | ||
|
|
||
| def test_speculation_depth(self): | ||
| """Test different speculation depths""" | ||
| input_ids = self.main_tokenizer.encode("Test text", return_tensors="pt") | ||
| self.generator.input_ids = input_ids | ||
|
|
||
| for depth in [1, 8, 17]: | ||
| self.generator.num_assistant_tokens = depth | ||
| candidates, scores = self.generator.get_candidates(input_ids) | ||
| self.assertLessEqual( | ||
| candidates.shape[1] - input_ids.shape[1], depth | ||
| ) | ||
|
|
||
| def test_device_consistency(self): | ||
| """Test handling of inputs on different devices""" | ||
| if torch.cuda.is_available(): | ||
| input_ids = torch.tensor([[1, 2, 3]]).to( | ||
| self.generator.assistant_model.device) | ||
| self.generator.input_ids = input_ids | ||
| candidates, scores = self.generator.get_candidates(input_ids) | ||
| self.assertEqual(candidates.device, input_ids.device) | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| unittest.main() | ||
Uh oh!
There was an error while loading. Please reload this page.