Lean 4 formalization of "A Group-Theoretic Approach to Shannon Capacity of Graphs and a Limit Theorem from Lattice Packings" by Buys, Polak, and Zuiddam.
-
fractionGraph p q— The fraction graph$E_{p/q}$ on$\mathbb{Z}/p\mathbb{Z}$ where vertices$u, v$ are adjacent iff$\text{dist}(u,v) < q$ (mod$p$ ). The special case$E_{p/2}$ is the cycle graph$C_p$ . -
strongPower G n— The$n$ -th strong graph power$G^{\boxtimes n}$ -
shannonCapacity G— The Shannon capacity$\Theta(G) = \sup_n \alpha(G^{\boxtimes n})^{1/n}$ -
subgroupIndependenceNumber Γ— The subgroup independence number$\alpha_g(\Gamma)$ : maximum size of a subgroup that is an independent set -
subgroupShannonCapacity Γ— The subgroup Shannon capacity$\Theta_g(\Gamma) = \sup_n \alpha_g(\Gamma^{\boxtimes n})^{1/n}$
| Paper | Lean | Statement |
|---|---|---|
| Theorem 1.1 | limit_cycles |
|
| Theorem 1.2 | limit_fraction_graphs |
|
| Theorem 1.3 | subgroup_limit |
|
GroupTheoreticShannonCapacity/
├── Main.lean # Theorem statements (206 lines)
├── MainProofs.lean # Proofs of main results (1,112 lines)
├── Basic.lean # Core definitions, upper bound (563 lines)
├── FractionGraphs.lean # Cohomomorphism theory (1,052 lines)
├── Construction.lean # Parametric construction (2,293 lines)
├── MAlpha.lean # M_α matrix properties (858 lines)
├── P0Matrix.lean # P₀ matrix theory (775 lines)
├── Lattice.lean # Matrix to independent set (708 lines)
└── Defs.lean # Basic definitions (55 lines)
Main.lean
│
MainProofs.lean
│
├── Basic.lean ──────────────► Defs.lean
├── FractionGraphs.lean ─────► Basic.lean
├── Lattice.lean ────────────► Defs.lean
└── Construction.lean
│
├── MAlpha.lean ─────► P0Matrix.lean
└── P0Matrix.lean ───► Lattice.lean, Basic.lean
Requires Lean 4 and Mathlib. To build:
lake exe cache get # Download Mathlib cache
lake buildThis formalization was developed with the assistance of lean-lsp-mcp.