Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs. Follow the steps below to integrate into your own application, or alternativly use the π Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint for even easier inference (using the standard baseUrl, and apiKey params).
- install package:
npm install bedrock-wrapper
-
import
bedrockWrapperimport { bedrockWrapper } from "bedrock-wrapper";
-
create an
awsCredsobject and fill in your AWS credentialsconst awsCreds = { region: AWS_REGION, accessKeyId: AWS_ACCESS_KEY_ID, secretAccessKey: AWS_SECRET_ACCESS_KEY, };
-
clone your openai chat completions object into
openaiChatCompletionsCreateObjector create a new one and edit the valuesconst openaiChatCompletionsCreateObject = { "messages": messages, "model": "Claude-4-5-Sonnet", "max_tokens": LLM_MAX_GEN_TOKENS, "stream": true, "temperature": LLM_TEMPERATURE, "top_p": LLM_TOP_P, "stop_sequences": ["STOP", "END"], // Optional: sequences that will stop generation };
the
messagesvariable should be in openai's role/content format (not all models support system prompts)messages = [ { role: "system", content: "You are a helpful AI assistant that follows instructions extremely well. Answer the user questions accurately. Think step by step before answering the question. You will get a $100 tip if you provide the correct answer.", }, { role: "user", content: "Describe why openai api standard used by lots of serverless LLM api providers is better than aws bedrock invoke api offered by aws bedrock. Limit your response to five sentences.", }, { role: "assistant", content: "", }, ]
the
modelvalue should be the correspondingmodelNamevalue in thebedrock_modelssection below (see Supported Models below) -
call the
bedrockWrapperfunction and pass in the previously definedawsCredsandopenaiChatCompletionsCreateObjectobjects// create a variable to hold the complete response let completeResponse = ""; // invoke the streamed bedrock api response for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject)) { completeResponse += chunk; // --------------------------------------------------- // -- each chunk is streamed as it is received here -- // --------------------------------------------------- process.stdout.write(chunk); // β do stuff with the streamed chunk } // console.log(`\n\completeResponse:\n${completeResponse}\n`); // β optional do stuff with the complete response returned from the API reguardless of stream or not
if calling the unstreamed version you can call bedrockWrapper like this
// create a variable to hold the complete response let completeResponse = ""; if (!openaiChatCompletionsCreateObject.stream){ // invoke the unstreamed bedrock api response const response = await bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject); for await (const data of response) { completeResponse += data; } // ---------------------------------------------------- // -- unstreamed complete response is available here -- // ---------------------------------------------------- console.log(`\n\completeResponse:\n${completeResponse}\n`); // β do stuff with the complete response }
-
NEW: Using the Converse API (optional)
You can now optionally use AWS Bedrock's Converse API instead of the Invoke API by passing
useConverseAPI: truein the options parameter:// Use the Converse API for unified request/response format across all models for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject, { useConverseAPI: true })) { completeResponse += chunk; process.stdout.write(chunk); }
The Converse API provides:
- Consistent API: Single request/response format across all models
- Simplified conversation management: Better handling of multi-turn conversations
- System prompts: Cleaner separation of system instructions
- Tool use support: Native support for function calling (where supported)
- Unified multimodal: Consistent handling of text and image inputs
| modelName | AWS Model Id | Image |
|---|---|---|
| Claude-4-1-Opus | us.anthropic.claude-opus-4-1-20250805-v1:0 | β |
| Claude-4-1-Opus-Thinking | us.anthropic.claude-opus-4-1-20250805-v1:0 | β |
| Claude-4-Opus | us.anthropic.claude-opus-4-20250514-v1:0 | β |
| Claude-4-Opus-Thinking | us.anthropic.claude-opus-4-20250514-v1:0 | β |
| Claude-4-5-Sonnet | us.anthropic.claude-sonnet-4-5-20250929-v1:0 | β |
| Claude-4-5-Sonnet-Thinking | us.anthropic.claude-sonnet-4-5-20250929-v1:0 | β |
| Claude-4-5-Haiku | us.anthropic.claude-haiku-4-5-20251001-v1:0 | β |
| Claude-4-5-Haiku-Thinking | us.anthropic.claude-haiku-4-5-20251001-v1:0 | β |
| Claude-4-Sonnet | us.anthropic.claude-sonnet-4-20250514-v1:0 | β |
| Claude-4-Sonnet-Thinking | us.anthropic.claude-sonnet-4-20250514-v1:0 | β |
| Claude-3-7-Sonnet-Thinking | us.anthropic.claude-3-7-sonnet-20250219-v1:0 | β |
| Claude-3-7-Sonnet | us.anthropic.claude-3-7-sonnet-20250219-v1:0 | β |
| Claude-3-5-Sonnet-v2 | anthropic.claude-3-5-sonnet-20241022-v2:0 | β |
| Claude-3-5-Sonnet | anthropic.claude-3-5-sonnet-20240620-v1:0 | β |
| Claude-3-5-Haiku | anthropic.claude-3-5-haiku-20241022-v1:0 | β |
| Claude-3-Haiku | anthropic.claude-3-haiku-20240307-v1:0 | β |
| Nova-Pro | us.amazon.nova-pro-v1:0 | β |
| Nova-Lite | us.amazon.nova-lite-v1:0 | β |
| Nova-Micro | us.amazon.nova-micro-v1:0 | β |
| GPT-OSS-120B | openai.gpt-oss-120b-1:0 | β |
| GPT-OSS-120B-Thinking | openai.gpt-oss-120b-1:0 | β |
| GPT-OSS-20B | openai.gpt-oss-20b-1:0 | β |
| GPT-OSS-20B-Thinking | openai.gpt-oss-20b-1:0 | β |
| Llama-3-3-70b | us.meta.llama3-3-70b-instruct-v1:0 | β |
| Llama-3-2-1b | us.meta.llama3-2-1b-instruct-v1:0 | β |
| Llama-3-2-3b | us.meta.llama3-2-3b-instruct-v1:0 | β |
| Llama-3-2-11b | us.meta.llama3-2-11b-instruct-v1:0 | β |
| Llama-3-2-90b | us.meta.llama3-2-90b-instruct-v1:0 | β |
| Llama-3-1-8b | meta.llama3-1-8b-instruct-v1:0 | β |
| Llama-3-1-70b | meta.llama3-1-70b-instruct-v1:0 | β |
| Llama-3-1-405b | meta.llama3-1-405b-instruct-v1:0 | β |
| Llama-3-8b | meta.llama3-8b-instruct-v1:0 | β |
| Llama-3-70b | meta.llama3-70b-instruct-v1:0 | β |
| Mistral-7b | mistral.mistral-7b-instruct-v0:2 | β |
| Mixtral-8x7b | mistral.mixtral-8x7b-instruct-v0:1 | β |
| Mistral-Large | mistral.mistral-large-2402-v1:0 | β |
To return the list progrmatically you can import and call listBedrockWrapperSupportedModels:
import { listBedrockWrapperSupportedModels } from 'bedrock-wrapper';
console.log(`\nsupported models:\n${JSON.stringify(await listBedrockWrapperSupportedModels())}\n`);Additional Bedrock model support can be added.
Please modify the bedrock_models.js file and submit a PR π or create an Issue.
For models with image support (Claude 4+ series including Claude 4.5 Sonnet, Claude 4.5 Haiku, Claude 3.7 Sonnet, Claude 3.5 Sonnet, Claude 3 Haiku, Nova Pro, and Nova Lite), you can include images in your messages using the following format (not all models support system prompts):
messages = [
{
role: "system",
content: "You are a helpful AI assistant that can analyze images.",
},
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: {
url: "..." // base64 encoded image
}
}
]
}
]You can also use a direct URL to an image instead of base64 encoding:
messages = [
{
role: "user",
content: [
{ type: "text", text: "Describe this image in detail." },
{
type: "image_url",
image_url: {
url: "https://example.com/path/to/image.jpg" // direct URL to image
}
}
]
}
]You can include multiple images in a single message by adding more image_url objects to the content array.
Stop sequences are custom text sequences that cause the model to stop generating text. This is useful for controlling where the model stops its response.
const openaiChatCompletionsCreateObject = {
"messages": messages,
"model": "Claude-3-5-Sonnet",
"max_tokens": 100,
"stop_sequences": ["STOP", "END", "\n\n"], // Array of stop sequences
// OR use single string format:
// "stop": "STOP"
};Model Support:
- β Claude models: Fully supported (up to 8,191 sequences)
- β Nova models: Fully supported (up to 4 sequences)
- β GPT-OSS models: Fully supported
- β Mistral models: Fully supported (up to 10 sequences)
- β Llama models: Not supported (AWS Bedrock limitation)
Features:
- Compatible with OpenAI's
stopparameter (single string or array) - Also accepts
stop_sequencesparameter for explicit usage - Automatic conversion between string and array formats
- Model-specific parameter mapping handled automatically
Example Usage:
// Stop generation when model tries to output "7"
const result = await bedrockWrapper(awsCreds, {
messages: [{ role: "user", content: "Count from 1 to 10" }],
model: "Claude-3-5-Sonnet", // Use Claude, Nova, or Mistral models
stop_sequences: ["7"]
});
// Response: "1, 2, 3, 4, 5, 6," (stops before "7")
// Note: Llama models will ignore stop sequences due to AWS Bedrock limitationsSome AWS Bedrock models have specific parameter restrictions that are automatically handled by the wrapper:
Affected Models:
- Claude-4-5-Sonnet & Claude-4-5-Sonnet-Thinking
- Claude-4-5-Haiku & Claude-4-5-Haiku-Thinking
- Claude-4-Sonnet & Claude-4-Sonnet-Thinking
- Claude-4-Opus & Claude-4-Opus-Thinking
- Claude-4-1-Opus & Claude-4-1-Opus-Thinking
Restriction: These models cannot accept both temperature and top_p parameters simultaneously.
Automatic Handling: When both parameters are provided, the wrapper automatically:
- Keeps
temperature(prioritized as more commonly used) - Removes
top_pto prevent validation errors - Works with both APIs (Invoke API and Converse API)
const request = {
messages: [{ role: "user", content: "Hello" }],
model: "Claude-4-5-Sonnet",
temperature: 0.7, // β
Kept
top_p: 0.9 // β Automatically removed
};
// No error thrown - wrapper handles the restriction automatically
const response = await bedrockWrapper(awsCreds, request);Why This Happens: AWS Bedrock enforces this restriction on newer Claude models to ensure optimal performance and prevent conflicting sampling parameters.
The package includes comprehensive test suites to verify functionality:
# Test all models with the Both APIs (Comparison)
npm run test
# Test all models with the Invoke API
npm run test:invoke
# Test all models with the Converse API
npm run test:converse
# Test vision/multimodal capabilities with Both APIs (Comparison)
npm run test-vision
# Test vision/multimodal capabilities with Invoke API
npm run test-vision:invoke
# Test vision/multimodal capabilities with Converse API
npm run test-vision:converse
# Test stop sequences functionality with Both APIs (Comparison)
npm run test-stop
# Test stop sequences functionality with Invoke API
npm run test-stop:invoke
# Test stop sequences functionality with Converse API
npm run test-stop:converse
# Interactive testing
npm run interactiveIn case you missed it at the beginning of this doc, for an even easier setup, use the π Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint (using the standard baseUrl, and apiKey params).
- AWS Meta Llama Models User Guide
- AWS Mistral Models User Guide
- OpenAI API
- AWS Bedrock
- AWS SDK for JavaScript
Please consider sending me a tip to support my work π

