forked from ethereum/consensus-specs
-
Notifications
You must be signed in to change notification settings - Fork 0
PeerDAS #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
PeerDAS #1
Changes from 37 commits
Commits
Show all changes
39 commits
Select commit
Hold shift + click to select a range
bb674ef
Copied from Danny's ethresearch post
hwwhww b62d532
wip
hwwhww af9a9b7
wip
hwwhww 54661f4
Add `TARGET_NUMBER_OF_PEERS`
hwwhww a27bee0
Add networking spec draft
hwwhww 5a0b661
fix
hwwhww ef3586e
simplification
hwwhww 88d840e
Rename `DoYouHave` to `GetCustodyStatus`
hwwhww ab85c7c
Add DataLineSidecar design
hwwhww 0440a8c
Apply suggestions from code review
hwwhww b2d08fa
Revamp after reviews and discussion
hwwhww 65ce492
Remove `CustodyStatus`
hwwhww b36bbf5
minor fix
hwwhww b970213
Change`DataColumn` to `List[DataCell, MAX_BLOBS_PER_BLOCK]`
hwwhww 28a914a
Move folder
hwwhww 3c386fe
Replace `DataColumnByRootAndIndex` with `DataColumnSidecarByRoot` mes…
hwwhww b5d1220
Remove `DataRow`
hwwhww 9d0cd0f
Apply suggestions from @jacobkaufmann code review
hwwhww 8d55943
Represent matrix in `BLSFieldElement` form
hwwhww 8e7dca2
Merge branch 'dev' into peer-das
hwwhww b2ffa27
Misc minor fix
hwwhww 2feed04
Add linter support
hwwhww 82d2e58
Add column subnet validation. Split `verify_column_sidecar` into two …
hwwhww 208a4f7
Fix `get_data_column_sidecars` by using `compute_samples_and_proofs`
hwwhww be5a0e2
Apply suggestions from code review
hwwhww 9435da3
Do not assign row custody
hwwhww e896d40
Apply suggestions from code review
hwwhww 0dde817
Revamp reconstruction section
hwwhww 6f08051
Use depth as the primary preset for inclusion proof. Fix `get_data_co…
hwwhww b08e1ed
Change `SAMPLES_PER_SLOT` to 8 and add tests (requirement TBD)
hwwhww d714e97
Apply PR feedback from @ppopth and @jtraglia
hwwhww 826782c
Fix `get_data_column_sidecars`
hwwhww 08856d0
Apply suggestions from code review
hwwhww 317b30e
Apply suggestions from code review
hwwhww 8e28884
Fix `get_data_column_sidecars` and `get_custody_lines`
hwwhww df76abf
Apply suggestions from code review
hwwhww e61f454
Enhance tests
hwwhww e38c4c4
fix typo
hwwhww f40c75e
Remove `epoch` from `get_custody_lines`
hwwhww File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,10 @@ | ||
| # Mainnet preset - PeerDAS | ||
|
|
||
| # Misc | ||
| # --------------------------------------------------------------- | ||
| # uint64(floorlog2(get_generalized_index(BeaconBlockBody, 'blob_kzg_commitments')) | ||
| KZG_COMMITMENTS_INCLUSION_PROOF_DEPTH: 4 | ||
| # `uint64(2**6)` (= 64) | ||
| FIELD_ELEMENTS_PER_CELL: 64 | ||
| # `uint64((FIELD_ELEMENTS_PER_BLOB * 2) // FIELD_ELEMENTS_PER_CELL)` (= 128) | ||
| NUMBER_OF_COLUMNS: 128 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,10 @@ | ||
| # Minimal preset - PeerDAS | ||
|
|
||
| # Misc | ||
| # --------------------------------------------------------------- | ||
| # uint64(floorlog2(get_generalized_index(BeaconBlockBody, 'blob_kzg_commitments')) | ||
| KZG_COMMITMENTS_INCLUSION_PROOF_DEPTH: 4 | ||
| # `uint64(2**6)` (= 64) | ||
| FIELD_ELEMENTS_PER_CELL: 64 | ||
| # `uint64((FIELD_ELEMENTS_PER_BLOB * 2) // FIELD_ELEMENTS_PER_CELL)` (= 128) | ||
| NUMBER_OF_COLUMNS: 128 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -7,6 +7,7 @@ | |
| EIP6110 = 'eip6110' | ||
| EIP7002 = 'eip7002' | ||
| WHISK = 'whisk' | ||
| PEERDAS = 'peerdas' | ||
|
|
||
|
|
||
|
|
||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,27 @@ | ||
| from typing import Dict | ||
|
|
||
| from .base import BaseSpecBuilder | ||
| from ..constants import PEERDAS | ||
|
|
||
|
|
||
| class PeerDASSpecBuilder(BaseSpecBuilder): | ||
| fork: str = PEERDAS | ||
|
|
||
| @classmethod | ||
| def imports(cls, preset_name: str): | ||
| return f''' | ||
| from eth2spec.deneb import {preset_name} as deneb | ||
| ''' | ||
|
|
||
| @classmethod | ||
| def hardcoded_custom_type_dep_constants(cls, spec_object) -> str: | ||
| return { | ||
| 'NUMBER_OF_COLUMNS': spec_object.preset_vars['NUMBER_OF_COLUMNS'].value, | ||
| 'FIELD_ELEMENTS_PER_CELL': spec_object.preset_vars['FIELD_ELEMENTS_PER_CELL'].value, | ||
| } | ||
|
|
||
| @classmethod | ||
| def hardcoded_func_dep_presets(cls, spec_object) -> Dict[str, str]: | ||
| return { | ||
| 'KZG_COMMITMENTS_INCLUSION_PROOF_DEPTH': spec_object.preset_vars['KZG_COMMITMENTS_INCLUSION_PROOF_DEPTH'].value, | ||
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,237 @@ | ||
| # Peer Data Availability Sampling -- Core | ||
|
|
||
| **Notice**: This document is a work-in-progress for researchers and implementers. | ||
|
|
||
| ## Table of contents | ||
|
|
||
| <!-- TOC --> | ||
| <!-- START doctoc generated TOC please keep comment here to allow auto update --> | ||
| <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE --> | ||
|
|
||
| - [Custom types](#custom-types) | ||
| - [Configuration](#configuration) | ||
| - [Data size](#data-size) | ||
| - [Custody setting](#custody-setting) | ||
| - [Helper functions](#helper-functions) | ||
| - [`get_custody_lines`](#get_custody_lines) | ||
| - [`compute_extended_data`](#compute_extended_data) | ||
| - [`compute_extended_matrix`](#compute_extended_matrix) | ||
| - [`compute_samples_and_proofs`](#compute_samples_and_proofs) | ||
| - [`get_data_column_sidecars`](#get_data_column_sidecars) | ||
| - [Custody](#custody) | ||
| - [Custody requirement](#custody-requirement) | ||
| - [Public, deterministic selection](#public-deterministic-selection) | ||
| - [Peer discovery](#peer-discovery) | ||
| - [Extended data](#extended-data) | ||
| - [Column gossip](#column-gossip) | ||
| - [Parameters](#parameters) | ||
| - [Reconstruction and cross-seeding](#reconstruction-and-cross-seeding) | ||
| - [Peer sampling](#peer-sampling) | ||
| - [Peer scoring](#peer-scoring) | ||
| - [DAS providers](#das-providers) | ||
| - [A note on fork choice](#a-note-on-fork-choice) | ||
| - [FAQs](#faqs) | ||
| - [Row (blob) custody](#row-blob-custody) | ||
|
|
||
| <!-- END doctoc generated TOC please keep comment here to allow auto update --> | ||
| <!-- /TOC --> | ||
|
|
||
| ## Custom types | ||
|
|
||
| We define the following Python custom types for type hinting and readability: | ||
|
|
||
| | Name | SSZ equivalent | Description | | ||
| | - | - | - | | ||
| | `DataCell` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_CELL]` | The data unit of a cell in the extended data matrix | | ||
| | `DataColumn` | `List[DataCell, MAX_BLOBS_PER_BLOCK]` | The data of each column in PeerDAS | | ||
| | `ExtendedMatrix` | `List[DataCell, MAX_BLOBS_PER_BLOCK * NUMBER_OF_COLUMNS]` | The full data with blobs and one-dimensional erasure coding extension | | ||
| | `FlatExtendedMatrix` | `List[BLSFieldElement, MAX_BLOBS_PER_BLOCK * FIELD_ELEMENTS_PER_BLOB * NUMBER_OF_COLUMNS]` | The flattened format of `ExtendedMatrix` | | ||
| | `LineIndex` | `uint64` | The index of the rows or columns in `FlatExtendedMatrix` matrix | | ||
|
|
||
| ## Configuration | ||
|
|
||
| ### Data size | ||
|
|
||
| | Name | Value | Description | | ||
| | - | - | - | | ||
| | `FIELD_ELEMENTS_PER_CELL` | `uint64(2**6)` (= 64) | Elements per `DataCell` | | ||
| | `NUMBER_OF_COLUMNS` | `uint64((FIELD_ELEMENTS_PER_BLOB * 2) // FIELD_ELEMENTS_PER_CELL)` (= 128) | Number of columns in the extended data matrix. | | ||
|
|
||
| ### Custody setting | ||
|
|
||
| | Name | Value | Description | | ||
| | - | - | - | | ||
| | `SAMPLES_PER_SLOT` | `8` | Number of random samples a node queries per slot | | ||
| | `CUSTODY_REQUIREMENT` | `2` | Minimum number of columns an honest node custodies and serves samples from | | ||
| | `TARGET_NUMBER_OF_PEERS` | `70` | Suggested minimum peer count | | ||
|
|
||
| ### Helper functions | ||
|
|
||
| #### `get_custody_lines` | ||
|
|
||
| ```python | ||
| def get_custody_lines(node_id: NodeID, epoch: Epoch, custody_size: uint64) -> Sequence[LineIndex]: | ||
| assert custody_size <= NUMBER_OF_COLUMNS | ||
| all_items = list(range(NUMBER_OF_COLUMNS)) | ||
| line_index = (node_id + epoch) % NUMBER_OF_COLUMNS | ||
| return [LineIndex(all_items[(line_index + i) % len(all_items)]) for i in range(custody_size)] | ||
| ``` | ||
|
|
||
| #### `compute_extended_data` | ||
|
|
||
| ```python | ||
| def compute_extended_data(data: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]: | ||
| # TODO | ||
| # pylint: disable=unused-argument | ||
| ... | ||
| ``` | ||
|
|
||
| #### `compute_extended_matrix` | ||
|
|
||
| ```python | ||
| def compute_extended_matrix(blobs: Sequence[Blob]) -> FlatExtendedMatrix: | ||
| matrix = [compute_extended_data(blob) for blob in blobs] | ||
| return FlatExtendedMatrix(matrix) | ||
| ``` | ||
|
|
||
| #### `compute_samples_and_proofs` | ||
|
|
||
| ```python | ||
| def compute_samples_and_proofs(blob: Blob) -> Tuple[ | ||
| Vector[DataCell, NUMBER_OF_COLUMNS], | ||
| Vector[KZGProof, NUMBER_OF_COLUMNS]]: | ||
| """ | ||
| Defined in polynomial-commitments-sampling.md | ||
| """ | ||
| # pylint: disable=unused-argument | ||
| ... | ||
| ``` | ||
|
|
||
| #### `get_data_column_sidecars` | ||
|
|
||
| ```python | ||
| def get_data_column_sidecars(signed_block: SignedBeaconBlock, | ||
| blobs: Sequence[Blob]) -> Sequence[DataColumnSidecar]: | ||
| signed_block_header = compute_signed_block_header(signed_block) | ||
| block = signed_block.message | ||
| kzg_commitments_inclusion_proof = compute_merkle_proof( | ||
| block.body, | ||
| get_generalized_index(BeaconBlockBody, 'blob_kzg_commitments'), | ||
| ) | ||
| cells_and_proofs = [compute_samples_and_proofs(blob) for blob in blobs] | ||
| blob_count = len(blobs) | ||
| cells = [cells_and_proofs[i][0] for i in range(blob_count)] | ||
| proofs = [cells_and_proofs[i][1] for i in range(blob_count)] | ||
| sidecars = [] | ||
| for column_index in range(NUMBER_OF_COLUMNS): | ||
| column = DataColumn([cells[row_index][column_index] | ||
| for row_index in range(blob_count)]) | ||
| kzg_proof_of_column = [proofs[row_index][column_index] | ||
| for row_index in range(blob_count)] | ||
| sidecars.append(DataColumnSidecar( | ||
| index=column_index, | ||
| column=column, | ||
| kzg_commitments=block.body.blob_kzg_commitments, | ||
| kzg_proofs=kzg_proof_of_column, | ||
| signed_block_header=signed_block_header, | ||
| kzg_commitments_inclusion_proof=kzg_commitments_inclusion_proof, | ||
| )) | ||
| return sidecars | ||
| ``` | ||
|
|
||
| ## Custody | ||
|
|
||
| ### Custody requirement | ||
|
|
||
| Each node downloads and custodies a minimum of `CUSTODY_REQUIREMENT` columns per slot. The particular columns that the node is required to custody are selected pseudo-randomly (more on this below). | ||
|
|
||
| A node *may* choose to custody and serve more than the minimum honesty requirement. Such a node explicitly advertises a number greater than `CUSTODY_REQUIREMENT` via the peer discovery mechanism -- for example, in their ENR (e.g. `custody_lines: 8` if the node custodies `8` columns each slot) -- up to a `NUMBER_OF_COLUMNS` (i.e. a super-full node). | ||
|
|
||
| A node stores the custodied columns for the duration of the pruning period and responds to peer requests for samples on those columns. | ||
|
|
||
| ### Public, deterministic selection | ||
|
|
||
| The particular columns that a node custodies are selected pseudo-randomly as a function (`get_custody_lines`) of the node-id, epoch, and custody size -- importantly this function can be run by any party as the inputs are all public. | ||
|
|
||
| *Note*: increasing the `custody_size` parameter for a given `node_id` and `epoch` extends the returned list (rather than being an entirely new shuffle) such that if `custody_size` is unknown, the default `CUSTODY_REQUIREMENT` will be correct for a subset of the node's custody. | ||
|
|
||
| *Note*: Even though this function accepts `epoch` as an input, the function can be tuned to remain stable for many epochs depending on network/subnet stability requirements. There is a trade-off between the rigidity of the network and the depth to which a subnet can be utilized for recovery. To ensure subnets can be utilized for recovery, staggered rotation likely needs to happen on the order of the pruning period. | ||
|
|
||
| ## Peer discovery | ||
|
|
||
| At each slot, a node needs to be able to readily sample from *any* set of columns. To this end, a node should find and maintain a set of diverse and reliable peers that can regularly satisfy their sampling demands. | ||
|
|
||
| A node runs a background peer discovery process, maintaining at least `TARGET_NUMBER_OF_PEERS` of various custody distributions (both custody_size and column assignments). The combination of advertised `custody_size` size and public node-id make this readily and publicly accessible. | ||
|
|
||
| `TARGET_NUMBER_OF_PEERS` should be tuned upward in the event of failed sampling. | ||
|
|
||
| *Note*: while high-capacity and super-full nodes are high value with respect to satisfying sampling requirements, a node should maintain a distribution across node capacities as to not centralize the p2p graph too much (in the extreme becomes hub/spoke) and to distribute sampling load better across all nodes. | ||
|
|
||
| *Note*: A DHT-based peer discovery mechanism is expected to be utilized in the above. The beacon-chain network currently utilizes discv5 in a similar method as described for finding peers of particular distributions of attestation subnets. Additional peer discovery methods are valuable to integrate (e.g., latent peer discovery via libp2p gossipsub) to add a defense in breadth against one of the discovery methods being attacked. | ||
|
|
||
| ## Extended data | ||
|
|
||
| In this construction, we extend the blobs using a one-dimensional erasure coding extension. The matrix comprises maximum `MAX_BLOBS_PER_BLOCK` rows and fixed `NUMBER_OF_COLUMNS` columns, with each row containing a `Blob` and its corresponding extension. | ||
|
|
||
| ## Column gossip | ||
|
|
||
| ### Parameters | ||
|
|
||
| For each column -- use `data_column_sidecar_{subnet_id}` subnets, where each column index maps to the `subnet_id`. The sidecars can be computed with `get_data_column_sidecars(signed_block: SignedBeaconBlock, blobs: Sequence[Blob])` helper. | ||
|
|
||
| To custody a particular column, a node joins the respective gossip subnet. Verifiable samples from their respective column are gossiped on the assigned subnet. | ||
|
|
||
| ### Reconstruction and cross-seeding | ||
|
|
||
| If the node obtains 50%+ of all the columns, they can reconstruct the full data matrix via `recover_samples_impl` helper. | ||
|
|
||
| If a node fails to sample a peer or fails to get a column on the column subnet, a node can utilize the Req/Resp message to query the missing column from other peers. | ||
|
|
||
| Once the node obtain the column, the node should send the missing columns to the column subnets. | ||
|
|
||
| *Note*: A node always maintains a matrix view of the rows and columns they are following, able to cross-reference and cross-seed in either direction. | ||
|
|
||
| *Note*: There are timing considerations to analyze -- at what point does a node consider samples missing and choose to reconstruct and cross-seed. | ||
|
|
||
| *Note*: There may be anti-DoS and quality-of-service considerations around how to send samples and consider samples -- is each individual sample a message or are they sent in aggregate forms. | ||
|
|
||
| ## Peer sampling | ||
|
|
||
| At each slot, a node makes (locally randomly determined) `SAMPLES_PER_SLOT` queries for samples from their peers via `DataColumnSidecarByRoot` request. A node utilizes `get_custody_lines` helper to determine which peer(s) to request from. If a node has enough good/honest peers across all rows and columns, this has a high chance of success. | ||
|
|
||
| ## Peer scoring | ||
|
|
||
| Due to the deterministic custody functions, a node knows exactly what a peer should be able to respond to. In the event that a peer does not respond to samples of their custodied rows/columns, a node may downscore or disconnect from a peer. | ||
|
|
||
| ## DAS providers | ||
|
|
||
| A DAS provider is a consistently-available-for-DAS-queries, super-full (or high capacity) node. To the p2p, these look just like other nodes but with high advertised capacity, and they should generally be able to be latently found via normal discovery. | ||
|
|
||
| DAS providers can also be found out-of-band and configured into a node to connect to directly and prioritize. Nodes can add some set of these to their local configuration for persistent connection to bolster their DAS quality of service. | ||
|
|
||
| Such direct peering utilizes a feature supported out of the box today on all nodes and can complement (and reduce attackability and increase quality-of-service) alternative peer discovery mechanisms. | ||
|
|
||
| ## A note on fork choice | ||
|
|
||
| *Fork choice spec TBD, but it will just be a replacement of `is_data_available()` call in Deneb with column sampling instead of full download. Note the `is_data_available(slot_N)` will likely do a `-1` follow distance so that you just need to check the availability of slot `N-1` for slot `N` (starting with the block proposer of `N`).* | ||
|
|
||
| The fork choice rule (essentially a DA filter) is *orthogonal to a given DAS design*, other than the efficiency of a particular design impacting it. | ||
|
|
||
| In any DAS design, there are probably a few degrees of freedom around timing, acceptability of short-term re-orgs, etc. | ||
|
|
||
| For example, the fork choice rule might require validators to do successful DAS on slot N to be able to include block of slot `N` in its fork choice. That's the tightest DA filter. But trailing filters are also probably acceptable, knowing that there might be some failures/short re-orgs but that they don't hurt the aggregate security. For example, the rule could be — DAS must be completed for slot N-1 for a child block in N to be included in the fork choice. | ||
hwwhww marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| Such trailing techniques and their analysis will be valuable for any DAS construction. The question is — can you relax how quickly you need to do DA and in the worst case not confirm unavailable data via attestations/finality, and what impact does it have on short-term re-orgs and fast confirmation rules. | ||
|
|
||
| ## FAQs | ||
|
|
||
| ### Row (blob) custody | ||
|
|
||
| In the one-dimension construction, a node samples the peers by requesting the whole `DataColumn`. In reconstruction, a node can reconstruct all the blobs by 50% of the columns. Note that nodes can still download the row via `blob_sidecar_{subnet_id}` subnets. | ||
|
|
||
| The potential benefits of having row custody could include: | ||
|
|
||
| 1. Allow for more "natural" distribution of data to consumers -- e.g., roll-ups -- but honestly, they won't know a priori which row their blob is going to be included in in the block, so they would either need to listen to all rows or download a particular row after seeing the block. The former looks just like listening to column [0, N) and the latter is req/resp instead of gossiping. | ||
| 2. Help with some sort of distributed reconstruction. Those with full rows can compute extensions and seed missing samples to the network. This would either need to be able to send individual points on the gossip or would need some sort of req/resp faculty, potentially similar to an `IHAVEPOINTBITFIELD` and `IWANTSAMPLE`. | ||
|
|
||
| However, for simplicity, we don't assign row custody assignments to nodes in the current design. | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.