Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/multi_adapter_rl.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ model = AutoModelForCausalLMWithValueHead.from_pretrained(
model_name,
peft_config=lora_config,
reward_adapter=rm_adapter_id,
load_in_8bit=True,
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)

...
Expand Down
10 changes: 8 additions & 2 deletions tests/test_dpo_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -642,6 +642,7 @@ def test_dpo_lora_save(self):
def test_dpo_lora_bf16_autocast_llama(self):
# Note this test only works on compute capability > 7 GPU devices
from peft import LoraConfig
from transformers import BitsAndBytesConfig

model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand All @@ -655,7 +656,9 @@ def test_dpo_lora_bf16_autocast_llama(self):
)

# lora model
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(
model_id, quantization_config=BitsAndBytesConfig(load_in_4bit=True)
)

training_args = DPOConfig(
output_dir=self.tmp_dir,
Expand Down Expand Up @@ -725,6 +728,7 @@ def test_dpo_lora_bf16_autocast_llama(self):
)
def test_dpo_lora_bf16_autocast(self, loss_type, pre_compute, gen_during_eval):
from peft import LoraConfig
from transformers import BitsAndBytesConfig

lora_config = LoraConfig(
r=16,
Expand All @@ -735,7 +739,9 @@ def test_dpo_lora_bf16_autocast(self, loss_type, pre_compute, gen_during_eval):
)

# lora model
model = AutoModelForCausalLM.from_pretrained(self.model_id, load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=BitsAndBytesConfig(load_in_4bit=True)
)

training_args = DPOConfig(
output_dir=self.tmp_dir,
Expand Down
7 changes: 5 additions & 2 deletions tests/test_peft_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,17 +101,20 @@ def test_create_bnb_peft_model_from_config(self):
Simply creates a peft model and checks that it can be loaded.
"""
from bitsandbytes.nn import Linear8bitLt
from transformers import BitsAndBytesConfig

trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(
self.causal_lm_model_id, peft_config=self.lora_config, load_in_8bit=True
self.causal_lm_model_id,
peft_config=self.lora_config,
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad)
assert nb_trainable_params == 905
assert isinstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt)

causal_lm_model = AutoModelForCausalLM.from_pretrained(
self.causal_lm_model_id, load_in_8bit=True, device_map="auto"
self.causal_lm_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map="auto"
)
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config)
# Check that the number of trainable parameters is correct
Expand Down
9 changes: 7 additions & 2 deletions trl/models/modeling_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,8 +149,13 @@ class and the arguments that are specific to trl models. The kwargs also support

current_device = cls._get_current_device()
if isinstance(pretrained_model_name_or_path, str):
is_loaded_in_8bit = pretrained_kwargs["load_in_8bit"] if "load_in_8bit" in pretrained_kwargs else False
is_loaded_in_4bit = pretrained_kwargs["load_in_4bit"] if "load_in_4bit" in pretrained_kwargs else False
quantization_config = pretrained_kwargs.get("quantization_config", None)
if quantization_config is not None:
is_loaded_in_8bit = getattr(quantization_config, "load_in_8bit", False)
is_loaded_in_4bit = getattr(quantization_config, "load_in_4bit", False)
else:
is_loaded_in_8bit = pretrained_kwargs["load_in_8bit"] if "load_in_8bit" in pretrained_kwargs else False
is_loaded_in_4bit = pretrained_kwargs["load_in_4bit"] if "load_in_4bit" in pretrained_kwargs else False
else:
is_loaded_in_8bit = getattr(pretrained_model_name_or_path, "is_loaded_in_8bit", False)
is_loaded_in_4bit = getattr(pretrained_model_name_or_path, "is_loaded_in_4bit", False)
Expand Down
Loading