Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 4 additions & 5 deletions src/transformers/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -1328,8 +1328,6 @@ class SinusoidalPositionalEmbedding(nn.Embedding):

def __init__(self, num_positions, embedding_dim, padding_idx=None):
super().__init__(num_positions, embedding_dim)
if embedding_dim % 2 != 0:
raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
self.weight = self._init_weight(self.weight)

@staticmethod
Expand All @@ -1342,10 +1340,11 @@ def _init_weight(out: nn.Parameter):
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out[:, 0 : dim // 2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) # This line breaks for odd n_pos
out[:, dim // 2 :] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
out.requires_grad = False
return out

@torch.no_grad()
Expand Down
4 changes: 2 additions & 2 deletions tests/test_modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -620,8 +620,8 @@ def test_positional_emb_cache_logic(self):
self.assertListEqual(no_cache[-1].tolist(), yes_cache[0][0].tolist())

def test_odd_embed_dim(self):
with self.assertRaises(NotImplementedError):
SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=0).to(torch_device)
# odd embedding_dim is allowed
SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=0).to(torch_device)

# odd num_positions is allowed
SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=0).to(torch_device)
Expand Down