Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 10 additions & 8 deletions src/transformers/models/swin/modeling_tf_swin.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,9 +226,9 @@ def window_reverse(windows: tf.Tensor, window_size: int, height: int, width: int
"""
Merges windows to produce higher resolution features.
"""
x = shape_list(windows)[0]
x = tf.shape(windows)[0]
y = tf.cast(height * width / (window_size * window_size), tf.int32)
batch_size = int(x / y)
batch_size = tf.math.floordiv(x, y)
windows = tf.reshape(
windows, (batch_size, height // window_size, width // window_size, window_size, window_size, -1)
)
Expand Down Expand Up @@ -688,16 +688,18 @@ def get_attn_mask(self, height: int, width: int, window_size: int, shift_size: i
img_mask = tf.expand_dims(img_mask, -1)
img_mask = tf.expand_dims(img_mask, 0)

mask_windows = window_partition(img_mask, self.window_size)
mask_windows = tf.reshape(mask_windows, (-1, self.window_size * self.window_size))
mask_windows = window_partition(img_mask, window_size)
mask_windows = tf.reshape(mask_windows, (-1, window_size * window_size))
attn_mask = tf.expand_dims(mask_windows, 1) - tf.expand_dims(mask_windows, 2)
attn_mask = tf.where(attn_mask != 0, float(-100.0), attn_mask)
attn_mask = tf.where(attn_mask == 0, float(0.0), attn_mask)
return attn_mask

def maybe_pad(self, hidden_states: tf.Tensor, height: int, width: int) -> Tuple[tf.Tensor, tf.Tensor]:
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
def maybe_pad(
self, hidden_states: tf.Tensor, window_size: int, height: int, width: int
) -> Tuple[tf.Tensor, tf.Tensor]:
pad_right = (window_size - width % window_size) % window_size
pad_bottom = (window_size - height % window_size) % window_size
pad_values = [[0, 0], [0, pad_bottom], [0, pad_right], [0, 0]]
hidden_states = tf.pad(hidden_states, pad_values)
pad_values = tf.reshape(pad_values, (-1,))
Expand All @@ -723,7 +725,7 @@ def call(
hidden_states = self.layernorm_before(hidden_states, training=training)
hidden_states = tf.reshape(hidden_states, (batch_size, height, width, channels))
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
hidden_states, pad_values = self.maybe_pad(hidden_states, window_size, height, width)

_, height_pad, width_pad, _ = shape_list(hidden_states)
# cyclic shift
Expand Down