Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions docs/source/process.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ For example, the [imdb](https://huggingface.co/datasets/imdb) dataset has 25000

```py
>>> from datasets import load_dataset
>>> datasets = load_dataset("imdb", split="train")
>>> dataset = load_dataset("imdb", split="train")
>>> print(dataset)
Dataset({
features: ['text', 'label'],
Expand Down Expand Up @@ -345,7 +345,7 @@ You can also use [`~Dataset.map`] with indices if you set `with_indices=True`. T
Multiprocessing significantly speeds up processing by parallelizing processes on the CPU. Set the `num_proc` parameter in [`~Dataset.map`] to set the number of processes to use:

```py
>>> updated_dataset = dataset.map(lambda example, idx: {"sentence2": f"{idx}: " + example["sentence2"]}, num_proc=4)
>>> updated_dataset = dataset.map(lambda example, idx: {"sentence2": f"{idx}: " + example["sentence2"]}, with_indices=True, num_proc=4)
```

The [`~Dataset.map`] also works with the rank of the process if you set `with_rank=True`. This is analogous to the `with_indices` parameter. The `with_rank` parameter in the mapped function goes after the `index` one if it is already present.
Expand Down Expand Up @@ -578,6 +578,7 @@ You can define sampling probabilities for each of the original datasets to speci
In this case, the new dataset is constructed by getting examples one by one from a random dataset until one of the datasets runs out of samples.

```py
>>> from datasets import Dataset, interleave_datasets
>>> seed = 42
>>> probabilities = [0.3, 0.5, 0.2]
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
Expand Down Expand Up @@ -643,7 +644,7 @@ The [`~Dataset.set_transform`] function applies a custom formatting transform on

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> def encode(batch):
... return tokenizer(batch["sentence1"], padding="longest", truncation=True, max_length=512, return_tensors="pt")
... return tokenizer(batch["sentence1"], batch["sentence2"], padding="longest", truncation=True, max_length=512, return_tensors="pt")
>>> dataset.set_transform(encode)
>>> dataset.format
{'type': 'custom', 'format_kwargs': {'transform': <function __main__.encode(batch)>}, 'columns': ['idx', 'label', 'sentence1', 'sentence2'], 'output_all_columns': False}
Expand Down