Skip to content

Conversation

@bruno-hays
Copy link
Contributor

@bruno-hays bruno-hays commented Aug 22, 2023

The "Spawn" method is preferred when multiprocessing on macOS or Windows systems, instead of the "Fork" method on linux systems.

This causes some methods of Iterable Datasets to break when using a dataloader with more than 0 workers.

I fixed the issue by replacing lambda and local methods which are not pickle-able.

See the example below:

from datasets import load_dataset
from torch.utils.data import DataLoader


if __name__ == "__main__":
    dataset = load_dataset("lhoestq/demo1", split="train")
    dataset = dataset.to_iterable_dataset(num_shards=3)

    dataset = dataset.remove_columns(["package_name"])
    dataset = dataset.rename_columns({
        "review": "review1"
    })
    dataset = dataset.rename_column("date", "date1")
    for sample in DataLoader(dataset, batch_size=None, num_workers=3):
        print(sample)

To notice the fix on a linux system, adding these lines should do the trick:

import multiprocessing
multiprocessing.set_start_method('spawn')

I also removed what looks like code duplication between rename_colums and rename_column

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Aug 22, 2023

The documentation is not available anymore as the PR was closed or merged.

@bruno-hays
Copy link
Contributor Author

@lhoestq
A test is failing, but I don't think it is due to my changes

@lhoestq
Copy link
Member

lhoestq commented Aug 22, 2023

Good catch ! Could you add a test to make sure transformed IterableDataset objects are still picklable ?

Something like test_pickle_after_many_transforms in in test_iterable_dataset.py that does a bunch or rename, map, take on a dataset and checks that the dataset can be pickled at the end and the reloaded dataset returns the same elements

@bruno-hays
Copy link
Contributor Author

@lhoestq
I added the test and fixed one last method

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Awesome thanks !

@lhoestq lhoestq merged commit 5503e7b into huggingface:main Aug 29, 2023
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006537 / 0.011353 (-0.004816) 0.003960 / 0.011008 (-0.007048) 0.085135 / 0.038508 (0.046627) 0.079271 / 0.023109 (0.056162) 0.383743 / 0.275898 (0.107845) 0.414622 / 0.323480 (0.091143) 0.004202 / 0.007986 (-0.003784) 0.003537 / 0.004328 (-0.000791) 0.065758 / 0.004250 (0.061508) 0.054225 / 0.037052 (0.017173) 0.395715 / 0.258489 (0.137226) 0.438985 / 0.293841 (0.145144) 0.030590 / 0.128546 (-0.097956) 0.008754 / 0.075646 (-0.066892) 0.288415 / 0.419271 (-0.130857) 0.051863 / 0.043533 (0.008330) 0.382501 / 0.255139 (0.127363) 0.414428 / 0.283200 (0.131228) 0.024084 / 0.141683 (-0.117599) 1.478726 / 1.452155 (0.026572) 1.544763 / 1.492716 (0.052047)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.285143 / 0.018006 (0.267136) 0.603859 / 0.000490 (0.603369) 0.004330 / 0.000200 (0.004131) 0.000108 / 0.000054 (0.000054)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027856 / 0.037411 (-0.009555) 0.081963 / 0.014526 (0.067437) 0.104106 / 0.176557 (-0.072451) 0.151378 / 0.737135 (-0.585757) 0.096476 / 0.296338 (-0.199862)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.402938 / 0.215209 (0.187729) 4.042312 / 2.077655 (1.964657) 2.068421 / 1.504120 (0.564301) 1.877870 / 1.541195 (0.336675) 1.947643 / 1.468490 (0.479153) 0.482031 / 4.584777 (-4.102746) 3.554747 / 3.745712 (-0.190965) 3.307811 / 5.269862 (-1.962050) 2.082886 / 4.565676 (-2.482791) 0.056853 / 0.424275 (-0.367422) 0.007535 / 0.007607 (-0.000072) 0.483694 / 0.226044 (0.257649) 4.827906 / 2.268929 (2.558978) 2.567572 / 55.444624 (-52.877052) 2.167206 / 6.876477 (-4.709271) 2.414442 / 2.142072 (0.272369) 0.579472 / 4.805227 (-4.225755) 0.132976 / 6.500664 (-6.367688) 0.059315 / 0.075469 (-0.016154)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.260086 / 1.841788 (-0.581702) 19.438297 / 8.074308 (11.363989) 14.188161 / 10.191392 (3.996769) 0.168534 / 0.680424 (-0.511890) 0.018070 / 0.534201 (-0.516131) 0.394241 / 0.579283 (-0.185043) 0.411057 / 0.434364 (-0.023307) 0.461123 / 0.540337 (-0.079215) 0.626844 / 1.386936 (-0.760092)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006896 / 0.011353 (-0.004457) 0.004207 / 0.011008 (-0.006801) 0.064981 / 0.038508 (0.026473) 0.080261 / 0.023109 (0.057152) 0.399403 / 0.275898 (0.123505) 0.433099 / 0.323480 (0.109619) 0.005697 / 0.007986 (-0.002288) 0.003601 / 0.004328 (-0.000728) 0.065924 / 0.004250 (0.061673) 0.058868 / 0.037052 (0.021815) 0.403705 / 0.258489 (0.145216) 0.439218 / 0.293841 (0.145377) 0.032789 / 0.128546 (-0.095757) 0.008675 / 0.075646 (-0.066971) 0.071217 / 0.419271 (-0.348055) 0.048487 / 0.043533 (0.004954) 0.399878 / 0.255139 (0.144739) 0.412816 / 0.283200 (0.129616) 0.023905 / 0.141683 (-0.117778) 1.541402 / 1.452155 (0.089247) 1.588080 / 1.492716 (0.095364)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.322863 / 0.018006 (0.304856) 0.530291 / 0.000490 (0.529802) 0.004862 / 0.000200 (0.004662) 0.000097 / 0.000054 (0.000042)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032697 / 0.037411 (-0.004715) 0.092416 / 0.014526 (0.077891) 0.107355 / 0.176557 (-0.069201) 0.160217 / 0.737135 (-0.576918) 0.109286 / 0.296338 (-0.187052)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.437375 / 0.215209 (0.222166) 4.362644 / 2.077655 (2.284990) 2.335404 / 1.504120 (0.831284) 2.173215 / 1.541195 (0.632020) 2.254061 / 1.468490 (0.785571) 0.493906 / 4.584777 (-4.090871) 3.609025 / 3.745712 (-0.136687) 3.352380 / 5.269862 (-1.917481) 2.074185 / 4.565676 (-2.491492) 0.057863 / 0.424275 (-0.366412) 0.007297 / 0.007607 (-0.000310) 0.512464 / 0.226044 (0.286420) 5.135921 / 2.268929 (2.866993) 2.788889 / 55.444624 (-52.655736) 2.479097 / 6.876477 (-4.397379) 2.717848 / 2.142072 (0.575776) 0.590442 / 4.805227 (-4.214785) 0.133721 / 6.500664 (-6.366943) 0.061491 / 0.075469 (-0.013978)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.429564 / 1.841788 (-0.412224) 20.628733 / 8.074308 (12.554425) 15.299571 / 10.191392 (5.108179) 0.171032 / 0.680424 (-0.509392) 0.019995 / 0.534201 (-0.514206) 0.401283 / 0.579283 (-0.178000) 0.416504 / 0.434364 (-0.017860) 0.471219 / 0.540337 (-0.069118) 0.641299 / 1.386936 (-0.745637)

albertvillanova pushed a commit that referenced this pull request Oct 24, 2023
* fixed remove columns and rename columns

* fixed rename column, removed code duplication

* linting

* typo

* added pickle test

* fixed rename column not being picklable

* linting

* added verif that the pickling process does not change the data

---------

Co-authored-by: Bruno Hays <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants