Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions src/nlp/utils/file_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,13 @@
except (ImportError, AssertionError):
_tf_available = False # pylint: disable=invalid-name

try:
import transformers

_transformers_available = True # pylint: disable=invalid-name
logger.info("transformers version {} available.".format(transformers.__version__))
except ImportError:
_transformers_available = False # pylint: disable=invalid-name

hf_cache_home = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
Expand Down
48 changes: 43 additions & 5 deletions src/nlp/utils/py_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,8 @@
import dill
import numpy as np

from .file_utils import _transformers_available


# NOTE: When used on an instance method, the cache is shared across all
# instances and IS NOT per-instance.
Expand Down Expand Up @@ -268,14 +270,29 @@ class Pickler(dill.Pickler):

def dump(obj, file):
"""pickle an object to a file"""
Pickler(file).dump(obj)
Pickler(file, recurse=True).dump(obj)
return


@contextlib.contextmanager
def _no_cache_fields(obj):
if _transformers_available:
import transformers as tr

if isinstance(obj, tr.PreTrainedTokenizerBase) and hasattr(obj, "cache") and isinstance(obj.cache, dict):
with temporary_assignment(obj, "cache", {}):
yield
else:
yield
else:
yield


def dumps(obj):
"""pickle an object to a string"""
file = StringIO()
dump(obj, file)
with _no_cache_fields(obj):
dump(obj, file)
return file.getvalue()


Expand All @@ -288,7 +305,7 @@ def proxy(func):


@pklregister(CodeType)
def save_code(pickler, obj):
def _save_code(pickler, obj):
"""
From dill._dill.save_code
This is a modified version that removes the origin (filename + line no.)
Expand All @@ -297,9 +314,11 @@ def save_code(pickler, obj):
dill._dill.log.info("Co: %s" % obj)
# Filenames of functions created in notebooks or shells start with '<'
# ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell
# Moreover lambda functions have a special name: '<lambda>'
# ex: (lambda x: x).__code__.co_name == "<lambda>" # True
# Only those two lines are different from the original implementation:
co_filename = "" if obj.co_filename.startswith("<") else obj.co_filename
co_firstlineno = 1 if obj.co_filename.startswith("<") else obj.co_firstlineno
co_filename = "" if obj.co_filename.startswith("<") or obj.co_name == "<lambda>" else obj.co_filename
co_firstlineno = 1 if obj.co_filename.startswith("<") or obj.co_name == "<lambda>" else obj.co_firstlineno
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good!

# The rest is the same as in the original dill implementation
if dill._dill.PY3:
if hasattr(obj, "co_posonlyargcount"):
Expand Down Expand Up @@ -363,3 +382,22 @@ def save_code(pickler, obj):

def copyfunc(func):
return types.FunctionType(func.__code__, func.__globals__, func.__name__, func.__defaults__, func.__closure__)


try:
import regex

@pklregister(type(regex.Regex("", 0)))
def _save_regex(pickler, obj):
dill._dill.log.info("Re: %s" % obj)
args = (
obj.pattern,
obj.flags,
)
pickler.save_reduce(regex.compile, args, obj=obj)
dill._dill.log.info("# Re")
return


except ImportError:
pass
134 changes: 134 additions & 0 deletions tests/test_caching.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
from hashlib import md5
from types import CodeType, FunctionType
from unittest import TestCase

import regex

import nlp

from .utils import require_transformers


class Foo:
def __init__(self, foo):
self.foo = foo

def __call__(self):
return self.foo


class TokenizersCachingTest(TestCase):
@require_transformers
def test_hash_tokenizer(self):
from transformers import AutoTokenizer

def encode(x):
return tokenizer(x)

# TODO: add hash consistency tests across sessions
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
hash1 = md5(nlp.utils.dumps(tokenizer)).hexdigest()
hash1_lambda = md5(nlp.utils.dumps(lambda x: tokenizer(x))).hexdigest()
hash1_encode = md5(nlp.utils.dumps(encode)).hexdigest()
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
hash2 = md5(nlp.utils.dumps(tokenizer)).hexdigest()
hash2_lambda = md5(nlp.utils.dumps(lambda x: tokenizer(x))).hexdigest()
hash2_encode = md5(nlp.utils.dumps(encode)).hexdigest()
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
hash3 = md5(nlp.utils.dumps(tokenizer)).hexdigest()
hash3_lambda = md5(nlp.utils.dumps(lambda x: tokenizer(x))).hexdigest()
hash3_encode = md5(nlp.utils.dumps(encode)).hexdigest()
self.assertEqual(hash1, hash3)
self.assertNotEqual(hash1, hash2)
self.assertEqual(hash1_lambda, hash3_lambda)
self.assertNotEqual(hash1_lambda, hash2_lambda)
self.assertEqual(hash1_encode, hash3_encode)
self.assertNotEqual(hash1_encode, hash2_encode)

@require_transformers
def test_hash_tokenizer_with_cache(self):
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("gpt2")
hash1 = md5(nlp.utils.dumps(tokenizer)).hexdigest()
tokenizer("Hello world !") # call once to change the tokenizer's cache
hash2 = md5(nlp.utils.dumps(tokenizer)).hexdigest()
self.assertEqual(hash1, hash2)

def test_hash_regex(self):
pat = regex.Regex("foo")
hash1 = md5(nlp.utils.dumps(pat)).hexdigest()
pat = regex.Regex("bar")
hash2 = md5(nlp.utils.dumps(pat)).hexdigest()
pat = regex.Regex("foo")
hash3 = md5(nlp.utils.dumps(pat)).hexdigest()
self.assertEqual(hash1, hash3)
self.assertNotEqual(hash1, hash2)


class RecurseDumpTest(TestCase):
def test_recurse_dump_for_function(self):
def func():
return foo

foo = [0]
hash1 = md5(nlp.utils.dumps(func)).hexdigest()
foo = [1]
hash2 = md5(nlp.utils.dumps(func)).hexdigest()
foo = [0]
hash3 = md5(nlp.utils.dumps(func)).hexdigest()
self.assertEqual(hash1, hash3)
self.assertNotEqual(hash1, hash2)

def test_recurse_dump_for_class(self):

hash1 = md5(nlp.utils.dumps(Foo([0]))).hexdigest()
hash2 = md5(nlp.utils.dumps(Foo([1]))).hexdigest()
hash3 = md5(nlp.utils.dumps(Foo([0]))).hexdigest()
self.assertEqual(hash1, hash3)
self.assertNotEqual(hash1, hash2)

def test_recurse_dump_for_method(self):

hash1 = md5(nlp.utils.dumps(Foo([0]).__call__)).hexdigest()
hash2 = md5(nlp.utils.dumps(Foo([1]).__call__)).hexdigest()
hash3 = md5(nlp.utils.dumps(Foo([0]).__call__)).hexdigest()
self.assertEqual(hash1, hash3)
self.assertNotEqual(hash1, hash2)

def test_dump_ipython_function(self):

code_args = (
"co_argcount",
"co_kwonlyargcount",
"co_nlocals",
"co_stacksize",
"co_flags",
"co_code",
"co_consts",
"co_names",
"co_varnames",
"co_filename",
"co_name",
"co_firstlineno",
"co_lnotab",
"co_freevars",
"co_cellvars",
)

def create_ipython_func(co_filename, returned_obj):
def func():
return returned_obj

code = func.__code__
code = CodeType(*[getattr(code, k) if k != "co_filename" else co_filename for k in code_args])
return FunctionType(code, func.__globals__, func.__name__, func.__defaults__, func.__closure__)

co_filename, returned_obj = "<ipython-input-2-e0383a102aae>", [0]
hash1 = md5(nlp.utils.dumps(create_ipython_func(co_filename, returned_obj))).hexdigest()
co_filename, returned_obj = "<ipython-input-2-e0383a102aae>", [1]
hash2 = md5(nlp.utils.dumps(create_ipython_func(co_filename, returned_obj))).hexdigest()
co_filename, returned_obj = "<ipython-input-5-713f6613acf3>", [0]
hash3 = md5(nlp.utils.dumps(create_ipython_func(co_filename, returned_obj))).hexdigest()
self.assertEqual(hash1, hash3)
self.assertNotEqual(hash1, hash2)
14 changes: 13 additions & 1 deletion tests/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import unittest
from distutils.util import strtobool

from nlp.utils.file_utils import _tf_available, _torch_available
from nlp.utils.file_utils import _tf_available, _torch_available, _transformers_available


def parse_flag_from_env(key, default=False):
Expand Down Expand Up @@ -50,6 +50,18 @@ def require_tf(test_case):
return test_case


def require_transformers(test_case):
"""
Decorator marking a test that requires transformers.

These tests are skipped when transformers isn't installed.

"""
if not _transformers_available:
test_case = unittest.skip("test requires transformers")(test_case)
return test_case


def slow(test_case):
"""
Decorator marking a test as slow.
Expand Down