Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
🤗 Datasets is a lightweight library providing **two** main features:

- **one-line dataloaders for many public datasets**: one liners to download and pre-process any of the ![number of datasets](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/datasets&color=brightgreen) major public datasets (in 467 languages and dialects!) provided on the [HuggingFace Datasets Hub](https://huggingface.co/datasets). With a simple command like `squad_dataset = load_dataset("squad")`, get any of these datasets ready to use in a dataloader for training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX),
- **efficient data pre-processing**: simple, fast and reproducible data pre-processing for the above public datasets as well as your own local datasets in CSV/JSON/text. With simple commands like `tokenized_dataset = dataset.map(tokenize_exemple)`, efficiently prepare the dataset for inspection and ML model evaluation and training.
- **efficient data pre-processing**: simple, fast and reproducible data pre-processing for the above public datasets as well as your own local datasets in CSV/JSON/text. With simple commands like `tokenized_dataset = dataset.map(tokenize_example)`, efficiently prepare the dataset for inspection and ML model evaluation and training.

[🎓 **Documentation**](https://huggingface.co/docs/datasets/) [🕹 **Colab tutorial**](https://colab.research.google.com/github/huggingface/datasets/blob/master/notebooks/Overview.ipynb)

Expand Down