Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion metrics/accuracy/accuracy.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,5 +83,7 @@ def _info(self):

def _compute(self, predictions, references, normalize=True, sample_weight=None):
return {
"accuracy": accuracy_score(references, predictions, normalize=normalize, sample_weight=sample_weight),
"accuracy": accuracy_score(
references, predictions, normalize=normalize, sample_weight=sample_weight
).tolist(),
}
2 changes: 1 addition & 1 deletion metrics/f1/f1.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,5 +106,5 @@ def _compute(self, predictions, references, labels=None, pos_label=1, average="b
pos_label=pos_label,
average=average,
sample_weight=sample_weight,
),
).tolist(),
}
8 changes: 4 additions & 4 deletions metrics/glue/glue.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,21 +81,21 @@


def simple_accuracy(preds, labels):
return (preds == labels).mean()
return (preds == labels).mean().tolist()


def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
f1 = f1_score(y_true=labels, y_pred=preds).tolist()
return {
"accuracy": acc,
"f1": f1,
}


def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
pearson_corr = pearsonr(preds, labels)[0].tolist()
spearman_corr = spearmanr(preds, labels)[0].tolist()
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
Expand Down
6 changes: 3 additions & 3 deletions metrics/indic_glue/indic_glue.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,12 +74,12 @@


def simple_accuracy(preds, labels):
return (preds == labels).mean()
return (preds == labels).mean().tolist()


def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
f1 = f1_score(y_true=labels, y_pred=preds).tolist()
return {
"accuracy": acc,
"f1": f1,
Expand All @@ -99,7 +99,7 @@ def precision_at_10(en_sentvecs, in_sentvecs):
actual = np.array(range(n))
preds = sim.argsort(axis=1)[:, :10]
matches = np.any(preds == actual[:, None], axis=1)
return matches.mean()
return matches.mean().tolist()


@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
Expand Down
2 changes: 1 addition & 1 deletion metrics/matthews_correlation/matthews_correlation.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,5 +82,5 @@ def _info(self):

def _compute(self, predictions, references, sample_weight=None):
return {
"matthews_correlation": matthews_corrcoef(references, predictions, sample_weight=sample_weight),
"matthews_correlation": matthews_corrcoef(references, predictions, sample_weight=sample_weight).tolist(),
}
2 changes: 1 addition & 1 deletion metrics/precision/precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,5 +108,5 @@ def _compute(self, predictions, references, labels=None, pos_label=1, average="b
pos_label=pos_label,
average=average,
sample_weight=sample_weight,
),
).tolist(),
}
2 changes: 1 addition & 1 deletion metrics/recall/recall.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,5 +108,5 @@ def _compute(self, predictions, references, labels=None, pos_label=1, average="b
pos_label=pos_label,
average=average,
sample_weight=sample_weight,
),
).tolist(),
}
8 changes: 4 additions & 4 deletions metrics/super_glue/super_glue.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,12 +107,12 @@


def simple_accuracy(preds, labels):
return (preds == labels).mean()
return (preds == labels).mean().tolist()


def acc_and_f1(preds, labels, f1_avg="binary"):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds, average=f1_avg)
f1 = f1_score(y_true=labels, y_pred=preds, average=f1_avg).tolist()
return {
"accuracy": acc,
"f1": f1,
Expand All @@ -138,9 +138,9 @@ def evaluate_multirc(ids_preds, labels):
f1s.append(f1)
em = int(sum([p == l for p, l in preds_labels]) == len(preds_labels))
ems.append(em)
f1_m = sum(f1s) / len(f1s)
f1_m = (sum(f1s) / len(f1s)).tolist()
em = sum(ems) / len(ems)
f1_a = f1_score(y_true=labels, y_pred=[id_pred["prediction"] for id_pred in ids_preds])
f1_a = f1_score(y_true=labels, y_pred=[id_pred["prediction"] for id_pred in ids_preds]).tolist()
return {"exact_match": em, "f1_m": f1_m, "f1_a": f1_a}


Expand Down