-
Notifications
You must be signed in to change notification settings - Fork 3k
Insert text classification template for Emotion dataset #2521
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1 +1 @@ | ||
| {"emotion":{"description":"Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the\npaper.\n","citation":"@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n","homepage":"https://github.com/dair-ai/emotion_dataset","license":"","features":{"text":{"dtype":"string","id":null,"_type":"Value"},"label":{"dtype":"string","id":null,"_type":"Value"}},"post_processed":null,"supervised_keys":null,"builder_name":"emotion","config_name":"emotion","version":{"version_str":"0.1.0","description":"First Emotion release","major":0,"minor":1,"patch":0},"splits":{"train":{"name":"train","num_bytes":1754632,"num_examples":16000,"dataset_name":"emotion"},"validation":{"name":"validation","num_bytes":216248,"num_examples":2000,"dataset_name":"emotion"},"test":{"name":"test","num_bytes":218768,"num_examples":2000,"dataset_name":"emotion"}},"download_checksums":{"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1":{"num_bytes":1658616,"checksum":"3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"},"https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1":{"num_bytes":204240,"checksum":"34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"},"https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1":{"num_bytes":206760,"checksum":"60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}},"download_size":2069616,"post_processing_size":null,"dataset_size":2189648,"size_in_bytes":4259264},"default":{"description":"Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n","citation":"@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n","homepage":"https://github.com/dair-ai/emotion_dataset","license":"","features":{"text":{"dtype":"string","id":null,"_type":"Value"},"label":{"num_classes":6,"names":["sadness","joy","love","anger","fear","surprise"],"names_file":null,"id":null,"_type":"ClassLabel"}},"post_processed":null,"supervised_keys":{"input":"text","output":"label"},"builder_name":"emotion","config_name":"default","version":{"version_str":"0.0.0","description":null,"major":0,"minor":0,"patch":0},"splits":{"train":{"name":"train","num_bytes":1741541,"num_examples":16000,"dataset_name":"emotion"},"validation":{"name":"validation","num_bytes":214699,"num_examples":2000,"dataset_name":"emotion"},"test":{"name":"test","num_bytes":217177,"num_examples":2000,"dataset_name":"emotion"}},"download_checksums":{"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1":{"num_bytes":1658616,"checksum":"3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"},"https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1":{"num_bytes":204240,"checksum":"34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"},"https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1":{"num_bytes":206760,"checksum":"60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}},"download_size":2069616,"post_processing_size":null,"dataset_size":2173417,"size_in_bytes":4243033}} | ||
| {"default": {"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n", "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n", "homepage": "https://github.com/dair-ai/emotion_dataset", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 6, "names": ["sadness", "joy", "love", "anger", "fear", "surprise"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "text", "output": "label"}, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["anger", "fear", "joy", "love", "sadness", "surprise"]}], "builder_name": "emotion", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1741541, "num_examples": 16000, "dataset_name": "emotion"}, "validation": {"name": "validation", "num_bytes": 214699, "num_examples": 2000, "dataset_name": "emotion"}, "test": {"name": "test", "num_bytes": 217177, "num_examples": 2000, "dataset_name": "emotion"}}, "download_checksums": {"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {"num_bytes": 1658616, "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"}, "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {"num_bytes": 204240, "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"}, "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {"num_bytes": 206760, "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}}, "download_size": 2069616, "post_processing_size": null, "dataset_size": 2173417, "size_in_bytes": 4243033}} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.