Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/datasets/arrow_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -638,7 +638,9 @@ def save_to_disk(self, dataset_path: str, fs=None):
with fs.open(
Path(dataset_path, config.DATASET_INFO_FILENAME).as_posix(), "w", encoding="utf-8"
) as dataset_info_file:
json.dump(dataset_info, dataset_info_file, indent=2, sort_keys=True)
# Sort only the first level of keys, or we might shuffle fields of nested features if we use sort_keys=True
sorted_keys_dataset_info = {key: dataset_info[key] for key in sorted(dataset_info)}
json.dump(sorted_keys_dataset_info, dataset_info_file, indent=2)
logger.info("Dataset saved in {}".format(dataset_path))

@staticmethod
Expand Down
55 changes: 36 additions & 19 deletions tests/test_arrow_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,25 +83,29 @@ def inject_fixtures(self, caplog):
self._caplog = caplog

def _create_dummy_dataset(
self, in_memory: bool, tmp_dir: str, multiple_columns=False, array_features=False
self, in_memory: bool, tmp_dir: str, multiple_columns=False, array_features=False, nested_features=False
) -> Dataset:
assert int(multiple_columns) + int(array_features) + int(nested_features) < 2
if multiple_columns:
if array_features:
data = {
"col_1": [[[True, False], [False, True]]] * 4, # 2D
"col_2": [[[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]] * 4, # 3D array
"col_3": [[3, 2, 1, 0]] * 4, # Sequence
data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"], "col_3": [False, True, False, True]}
dset = Dataset.from_dict(data)
elif array_features:
data = {
"col_1": [[[True, False], [False, True]]] * 4, # 2D
"col_2": [[[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]] * 4, # 3D array
"col_3": [[3, 2, 1, 0]] * 4, # Sequence
}
features = Features(
{
"col_1": Array2D(shape=(2, 2), dtype="bool"),
"col_2": Array3D(shape=(2, 2, 2), dtype="string"),
"col_3": Sequence(feature=Value("int64")),
}
features = Features(
{
"col_1": Array2D(shape=(2, 2), dtype="bool"),
"col_2": Array3D(shape=(2, 2, 2), dtype="string"),
"col_3": Sequence(feature=Value("int64")),
}
)
else:
data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"], "col_3": [False, True, False, True]}
features = None
)
dset = Dataset.from_dict(data, features=features)
elif nested_features:
data = {"nested": [{"a": i, "x": i * 10, "c": i * 100} for i in range(1, 11)]}
features = Features({"nested": {"a": Value("int64"), "x": Value("int64"), "c": Value("int64")}})
dset = Dataset.from_dict(data, features=features)
else:
dset = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(x) for x in np.arange(30).tolist()]})
Expand Down Expand Up @@ -139,7 +143,7 @@ def test_dummy_dataset(self, in_memory):
self.assertEqual(dset["col_1"][0], 3)

with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True, array_features=True) as dset:
with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset:
self.assertDictEqual(
dset.features,
Features(
Expand Down Expand Up @@ -249,6 +253,19 @@ def test_dummy_dataset_serialize(self, in_memory):
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")

with self._create_dummy_dataset(in_memory, tmp_dir, nested_features=True) as dset:
with assert_arrow_memory_doesnt_increase():
dset.save_to_disk(dataset_path)

with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(
dset.features,
Features({"nested": {"a": Value("int64"), "x": Value("int64"), "c": Value("int64")}}),
)
self.assertDictEqual(dset[0]["nested"], {"a": 1, "c": 100, "x": 10})
self.assertDictEqual(dset["nested"][0], {"a": 1, "c": 100, "x": 10})

def test_dummy_dataset_load_from_disk(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:

Expand Down Expand Up @@ -453,7 +470,7 @@ def test_class_encode_column(self, in_memory):
assert_arrow_metadata_are_synced_with_dataset_features(casted_dset)

# Test raises if feature is an array / sequence
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True, array_features=True) as dset:
with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset:
for column in dset.column_names:
with self.assertRaises(ValueError):
dset.class_encode_column(column)
Expand Down Expand Up @@ -1508,7 +1525,7 @@ def test_to_csv(self, in_memory):
self.assertListEqual(list(csv_dset.columns), list(dset.column_names))

# With array features
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True, array_features=True) as dset:
with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset:
file_path = os.path.join(tmp_dir, "test_path.csv")
bytes_written = dset.to_csv(path_or_buf=file_path)

Expand Down